Alternative Methods of Matrix Multiplication

Jack Ruder

May 2, 2021

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
\end{aligned}
$$

Algorithm 1 pseudocode for blockmult(A, B, bs)

1: if $b s=1$ then
2: return $A \cdot B$
3: end if
4: for $i=1$ to 2 do
5: \quad for $j=1$ to 2 do
6: $\quad C[i, j]=$ blockmult $\left(A[i, 1], B[1, j], \frac{b s}{2}\right)+$
7: \quad blockmult $\left(A[i, 2], B[2, j], \frac{b s}{2}\right)$
8: end for
9: end for

- 8 multiplications are needed.
- 4 additions are needed.
- Total arithmetic operations are $M(2 n)=8 M(n)+4 n^{2}$.
- Or, $M(n)=2 n^{3}-n^{2}$.
- This is the same complexity as entry-by-entry matrix multiplication.
-Definition
Strassen's multiplication only requires 7 multiplications.
Strassen's algorithm for matrix multiplication

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) . \\
& \\
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \quad C_{12}=M_{3}+M_{5} \\
& C_{21}=M_{2}+M_{4} C_{22}=M_{1}+M_{3}-M_{2}+M_{6} .
\end{aligned}
$$

$L_{2} \times 2$ example

$$
\text { Let } A=\left[\begin{array}{cc}
-1 & -1 \\
4 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right] . \text { To find } A B \text { we compute }
$$

Note that since this was a 2×2 example, we don't need to recurse, and treat the 1×1 blocks as scalars.

- 7 multiplications are needed per recursion.
- 18 additions are needed per recursion.
- If the crossover point is $n_{\min }$, then $\log _{2} n-\log _{2} n_{\text {min }}$ recursions are needed.
- Total arithmetic operations are $M(n) \approx n^{\log _{2} 7} \frac{M\left(n_{\min }\right)+6 n_{\text {min }}^{2}}{n_{\text {min }} \log ^{2}}$
- Strassen's with naive complexity becomes
$M(n) \approx n^{\log _{2} 7} \frac{2 n_{\min }^{3}+5 n_{\text {min }}^{2}}{n_{\text {min }}{ }^{\log _{2} 7}}$.

Complexity

- We see a value of 8 for $n_{\min }$ is close to optimal. Optimizing $n_{\text {min }}$

-Complexity
- The complexity is then $M(n) \sim 5.00 n^{2.807}$.
- Is this really practical?

Comparing Strassen's vs Naive

Complexity

- Best case scenario, Strassen's only yields improvements when $n \geq 128$
- In practice, n is much higher.
- Matrices are best represented in column-major or row-major orders.
- These storage schemes are more contiguous in memory than block storage schemes.
- Strassen's is not cache-optimal as a result.

Triangular matrices can be multiplied faster than regular matrices because of the zeroes.

Block Triangular Multiplication

For upper triangular A and upper triangular B,

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
A_{11} B_{11}+A_{12} 0 & A_{11} B_{12}+A_{12} B_{22} \\
0 B_{11}+A_{22} 0 & 0 B_{12}+A_{22} B_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{11} B_{11} & A_{11} B_{12}+A_{12} B_{22} \\
0 & A_{22} B_{22}
\end{array}\right],
\end{aligned}
$$

where A_{11}, B_{11}, A_{22} and B_{22} are upper triangular.
This approaches $O\left(n^{2}\right)$.

Strassen's in the triangular case is disappointing. Strassen's Triangular Multiplication

$$
\begin{array}{ll}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & M_{2}=A_{22} B_{11} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) & M_{4}=A_{22}\left(-B_{11}\right) \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} & M_{6}=\left(-A_{11}\right)\left(B_{11}+B_{12}\right) \\
M_{7}=\left(A_{12}-A_{22}\right) B_{22} . & \\
M_{8}=M_{1}-M_{2} & \\
C_{11}=M_{8}-M_{5}+M_{7} & \\
C_{12}=M_{3}+M_{5} & \\
C_{21}=0 & \\
C_{22}=M_{8}+M_{3}+M_{6} . &
\end{array}
$$

- We still need 6 multiplications.
- 2 normal, 4 triangular.
- 12 additions are needed.
- 9 normal, 3 triangular.
- Less arithmetic operations are needed in the standard block triangular algorithm, in both additions and multiplications.
- Strassen's here can't compete.

For nonsingular A, the block LDU decomposition is

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & \Delta
\end{array}\right]\left[\begin{array}{cc}
1 & A_{11}^{-1} A_{12} \\
0 & I
\end{array}\right]
$$

where $\Delta=A_{22}-A_{21} A_{11}^{-1} A_{12}$. The inverse comes easily,

$$
\begin{aligned}
A^{-1} & =\left[\begin{array}{cc}
l & -A_{11}^{-1} A_{12} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & \Delta^{-1}
\end{array}\right]\left[\begin{array}{cc}
l & 0 \\
-A_{21} A_{11}^{-1} & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12} \Delta^{-1} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} \Delta^{-1} \\
-\Delta^{-1} A_{21} A_{11}^{-1} & \Delta^{-1}
\end{array}\right] .
\end{aligned}
$$

Strassen's Inversion relies on these steps in order.
Strassen's algorithm for matrix inversion

1. $M_{1}=A_{11}^{-1}$
2. $M_{2}=A_{21} M_{1}$
3. $M_{3}=M_{1} A_{12}$
4. $M_{4}=A_{21} M_{3}$
5. $M_{5}=M_{4}-A_{22}$
6. $M_{6}=M_{5}^{-1}$
7. $\left(A^{-1}\right)_{12}=M_{3} M_{6}$
8. $\left(A^{-1}\right)_{21}=M_{6} M_{2}$
9. $M_{7}=M_{3}\left(A^{-1}\right)_{21}$
10. $\left(A^{-1}\right)_{11}=M_{1}-M_{7}$
11. $\left(A^{-1}\right)_{22}=-M_{6}$.

- The most expensive computation is matrix multiplication.
- We can find the inverse in $O(m u l(n))$.
- Strassen's provides speedups in matrix multiplication for large matrices.
- The results of faster matrix multiplication are quicker inversions.
- Given the lack of versatility in other types of matrices, Strassen's is not a great all-around tool.

