
Alternatives to the Naive Algorithm for Matrix Multiplication

Strassen’s, Triangular Matrices, and Inversion

Jack Ruder

Semester Project for
Advanced Linear Algebra (Math 390)

University of Puget Sound
Tacoma, WA
April 25, 2021



Alternatives to the Naive Algorithm for Matrix
Multiplication

Jack Ruder

Introduction
Matrix operations are extremely important computations used in different fields
of computing, notably in fields such as graphics and optimization. For this
reason many look to speed up matrix operations in order to save computing
resources in all types of programs. One of the most common computations
performed is matrix multiplication, a computation that runs in O(n3) time.
Cubic time is undesirable, and is enough of a motivation to seek an improvement.
This paper will show that through Strassen’s algorithm this can be slightly
improved, and that the algorithm’s implementation plays a large role in its
effectiveness. We will also look at some of the other modern algorithms to gain
a larger picture of the available options.

This paper will also examine the special case of triangular matrices, and
how Strassen’s algorithm can affect their multiplication. It is known that the
multiplicaion of triangular matrices occurs quicker than full matrices since the
existence of zeroes under/over the diagonals in both factors will guarantee zeroes
under/over the diagonals in the product. We can extend this idea to Strassen’s
multiplication algorithm, and allow us to perform fewer recursions in Strassen’s,
which will potentially lead to speedups vesus the naive triangular multiplication
algorithm.

Next, this paper will examine one of the implications of reducing the com-
plexity of matrix multiplication. Solving a system of linear equations is a very
common task, and is often performed by computing an inverse. Inverting a
matrix is typically a slow task, and in programs that rely on solving linear sys-
tems of equations, speeding up inversion is a useful thing. As we will show in
the paper, speedups in matrix multiplication translate directly to speedups in
inversion.

Lastly, we will briefly visit some of the other algorithms for matrix multipli-
cation, and explain their relevance in the real world.

1 The Naive Method
The naive method for matrix multiplication relies on calculating each entry
independently. For the multiplication C = AB where A is an m×n matrix and
B is an n× p matrix, the entries in C may be defined as

[
C
]
ik

=

n∑
j=1

[
A
]
ij

[
B
]
jk

.

1



Using this method, for every entry in C, n multiplications are needed, and
there are m× p entries in C, yielding a total of mnp multiplications. Similarly,
n − 1 additions are needed per entry, for a total of m(n − 1)p additions for
the entire matrix. For square matrices of size n, we can write the number of
multiplications as n3 and the number of additions as n3−n2. This yields a total
of 2n3 − n2 arithmetic operations.

Another method that will act as a warm up to Strassen’s is to compute the
product by factoring the matrix into blocks, and recurse down until the blocks
degrade to scalars. We have

AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
.

We see that 8 multiplications and 4 matrix additions are needed at each recur-
sion, and for a matrix of size n, log2 n recursions are needed. This allows us to
write the number of aritmetic operations as

M(2nmin) = 8M(nmin) + 4n2
min

M(4nmin) = 8M(2nmin) + 4(2nmin)2

= 82M(nmin) + (4 + 8)4n2
min

M(8nmin) = 83M(nmin) + (42 + 4 · 8 + 82)4n2
min

M(16nmin) = 8iM(nmin) + (43 + 42 · 8 + 4 · 82 + 83)4n2
min

M(2in) = 8iM(nmin) + (4i−1 + 4i−2 · 8 + · · · + 4 · 8i−2 + 8i−1)4n2
min

= 8iM(nmin) + 8i−1(1 +
1

2
+

1

4
+ · · · +

1

2i−1
)4n2

min

= 8iM(nmin) + 8i(
1

8
+

1

16
+

1

32
+ · · · +

1

2i−4
)4n2

min

= 8iM(nmin) + 8i
(

1

8
(2 − 1

2i−1
)

)
4n2

min.

We want to manually compute the products when we reach a block size of 2.
Using i = log2 n− log2 nmin,

M(n) =
8log2 n

8log2 2
M(2) +

8log2 n

8log2 2

(
1

8

(
2 − 1

2log2 n

2log2 2+1

))
4 · 22

= nlog2 8 12 + 4 − 8
n

8

= 2n3 − n2,

where M(n) is the number of arithmetic operations to compute the product for
matrices of size n. We recognize that this is the same number of operations as
in the naive method, meaning the product of matrices of size 2q × 2q can be
computed in the same time.

2



2 Strassen’s
Similarly to block matrix multiplication, Strassen’s algorithm is a recursive al-
gorithm that relies on partitioning 2n × 2n matrices into n × n blocks. The
expression AB = C when partitioned is written as[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
.

To begin, Strassen’s algortihm [GL13] recursively computes 7 multiplications
and 10 additions to obtain

M1 = (A11 + A22)(B11 + B22) M2 = (A21 + A22)B11

M3 = A11(B12 −B22) M4 = A22(B21 −B11)

M5 = (A11 + A12)B22 M6 = (A21 −A11)(B11 + B12)

M7 = (A12 −A22)(B21 + B22).

There are then 8 more additions (for a total of 18 additions) required to obtain
C as

C11 = M1 + M4 −M5 + M7 C12 = M3 + M5

C21 = M2 + M4 C22 = M1 + M3 −M2 + M6.

It is difficult to understand the motivation of Strassen’s proposed algorithm,
however it is easy to verify that it is correct. We have

C11 = M1 + M4 −M5 + M7

= (A11 + A22)(B11 + B22) + A22(B21 −B11) − (A11 + A12)B22 + (A12 −A22)(B21 + B22)

= A11B11 + A12B21,

C12 = M3 + M5

= A11(B12 −B22) + (A11 + A12)B22

= A11B12 + A12B22,

C21 = M2 + M4

= (A21 + A22)B11 + A22(B21 −B11)

= A21B11 + A22B21,

C22 = M1 + M3 −M2 + M6

= (A11 + A22)(B11 + B22) + A11(B12 −B22) − (A21 + A22)B11 + (A21 −A11)(B11 + B12)

= A21B12 + A22B22,

and find that we end up with our definition of block matrix multiplication,
verifying that Strassen’s algorithm is accurate.

In the basic implementation of Strassen’s algorithm, the factors are assumed
to be of size 2n. The algorithm recurses until the size of the blocks is nmin

or smaller, and then computes the multiplication of the blocks using another
method. Similarly to naive block multiplication, the total number of arithmetic

3



operations can then be written as

M(2n) = 7M(n) + 18n2

M(4n) = 72M(n) + (4 + 7) · 18n2

M(2inmin) = 7iM(nmin)(4i−1 + 4i−2 · 7 + · · · + 4 · 7i−2 + 7i−1)18n2
min

= 7iM(nmin) + 7i−1

(
i∑

k=1

(
4

7

)k−1
)

18n2
min

= 7iM(n) + 7i−1

(
1 −

(
4
7

)i
1 − 4

7

)
18n2

min

where M(n) is the number of arithmetic operations needed by Strassen’s algo-
rithm to multiply an n×n matrix [Bar06]. For large n = 2inmin we can further
generalize M(n) as

M(2inmin) ≈ 7iM(nmin) + 7i6n2
min

M(n) ≈ 7log2 n

7log2 nmin
M(nmin) +

7log2 n

7log2 nmin
6n2

min

M(n) ≈ nlog2 7M(nmin) + 6n2
min

n
log2 7
min

.

If using the naive method for matrix multiplication, then Strassen’s will require

M(n) ≈ nlog2 7n
3
min − n2

min + 6n2
min

n
log2 7
min

.

Here it can be seen that the value of nmin is important when implementing
Strassen’s. If we compare

nlog2 7n
3
min − n2

min + 6n2
min

n
log2 7
min

= 2n3 − n2,

we can find that Strassen’s only becomes faster at nmin = 40 [Bar06], although
here we only worry about square matrices whose sizes are powers of 2.

Regardless, when we make n very large, asymptomatically the algorithm will
run in O(nlog2 7) ≈ O(n2.807).

While this algorithm may be asymtomatically faster, even with an optimized
nmin issues with memory hierarchies in modern computers result in the algo-
rithm only being effective for matrices of larger sizes. This is primarily due to
the fact that in memory it is difficult to store matrices in block form, opposed
to column-major or row-major orders. Storing in block form makes the matri-
ces more difficult to keep in contiguous memory, meaning read and write times
can take longer. Experimentally, it has been found that nmin on most modern
systems is typically somewhere around 1200, a size which is rarely practical
[DN]. Certain implementations however do take advantage of the occasional
specialized hardware to achieve speedups and beat these caching issues.

4



3 Triangular Matrices
Upper triangular matrix multiplication–without loss of generality–under the
naive method may be modifed to compute the product in n3

3 time, by ignor-
ing the computations underneath the diagonals [GL13]. Instead, we may write
upper triangular matrices of size 2n in block form as[

A11 A12

0 A22

]
,

where A11 and A22 are restricted to being upper triangular and each block is of
size n. The naive way to multiply triangular matrices of size 2n with eachother
would be to use the naive method of block matrix multiplication to obtain[

A11 A12

0 A22

] [
B11 B12

0 B22

]
=

[
A11B11 + A120 A11B12 + A12B22

0B11 + A220 0B12 + A22B22

]
=

[
A11B11 A11B12 + A12B22

0 A22B22

]
.

SinceA11 andB11 are upper-triangular, their productA11B11 is upper-triangular
and similarly A22B22 is upper triangular. We may then recurse with block tri-
angular multiplication on the top left and bottom right blocks, and use the
normal form of naive matrix multiplication to recurse on the top-right. For the
triangular recursion, when the blocks degrade to scalars it is enough to perform
only the 4 multiplications and 1 addition since there is a 0 in the matrix.

The total number of arithmetic operations then becomes

T (2n) = 2T (n) + 2M(n) + n2

T (4n) = 2
(
2T (n) + 2M(n) + n2

)
+ 2(M(2n)) + (2n)2

= 22T (n) + (4 + 2 · 8)M(n) + (2 · 4 + 22)n2

T (8n) = 2
(
22T (n) + (4 + 2 · 8)M(n) + (2 · 4 + 22)n2

)
+ 2(82M(n) + (8 + 4)4n2) + (4n)2

= 23T (n) + (2 · 4 + 2 · 16 + 2 · 64)M(n) + (27 + 23)n2

where T (n) is the number of arithmetic operations needed by a triangular mul-
tiplication and M(n) is the the number of arithmetic operations needed by
conventional naive matrix multiplication. We can substitute 2n3 +n2 for M(n)
and ignore the n2 to obtain

T (2inmin) ≈ 2iT (nmin)

(
i∑

k=1

2i+2(k−1)

)
(2n3

min + n2
min).

≈ 2iT (nmin) +

(
23i − 2i

3

)
(2n3

min)

T (n) ≈ 2log2 n

2log2 2
T (2) +

16
(
23 log2 n−3 log2 2 − 2log2 n−log2 2

)
3

.

5



Triangular Strassen’s
Using Strassen’s on triangular matrix multiplication does not give a speedup.
We substitute the 0 matrix for A21 and B21 to obtain

M1 = (A11 + A22)(B11 + B22) M2 = A22B11

M3 = A11(B12 −B22) M4 = A22(−B11)

M5 = (A11 + A12)B22 M6 = (−A11)(B11 + B12)

M7 = (A12 −A22)B22.

Observe that M2 and M4 are additive inverses, meaning we only need M2 and
can flip the sign everywhere M4 is needed. Continuing with Strassen’s gives

M8 = M1 −M2

C11 = M8 −M5 + M7

C12 = M3 + M5

C21 = 0

C22 = M8 + M3 + M6.

Strassen’s here is clearly at a disadvantage. For every recursion 3 triangular
additions are needed, 2 triangular multiplications are needed, however 4 normal
multiplications and 9 normal additions are needed. In the triangular case, it
will be quicker just to use the naive method of matrix multiplication.

4 Inversion Using Strassen’s
In addition to providing a way to compute matrix multiplication with fewer
multiplications Strassen showed that the inverse of a matrix could be computed
recursively for a cost of ≤ 5.64nlog2 7 arithmetic operations[BH74]. Most impor-
tantly, the cost of Strassen’s inversion is the same as the cost for multiplication.

The inversion relies on a block LDU decomposition to compute the inverse.
The LDU decomposition is

A =

[
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 I

] [
A11 0
0 ∆

] [
I A−1

11 A12

0 I

]
where ∆ = A22 − A21A

−1
11 A12 is the Schur complement of A11, given that A11

and ∆ are nonsingular. Then,

A−1 =

[
I −A−1

11 A12

0 I

] [
A−1

11 0
0 ∆−1

] [
I 0

−A21A
−1
11 I

]
=

[
A−1

11 + A−1
11 A12∆−1A21A

−1
11 −A−1

11 A12∆−1

−∆−1A21A
−1
11 ∆−1

]

6



To verify that our inverse is correct we perform the computation

AA−1 =

[
I 0

A21A
−1
11 I

] [
A11 0
0 ∆

] [
I A−1

11 A12

0 I

] [
I −A−1

11 A12

0 I

] [
A−1

11 0
0 ∆−1

] [
I 0

−A21A
−1
11 I

]
=

[
I 0

A21A
−1
11 I

] [
A11 0
0 ∆

] [
I 0
0 I

] [
A−1

11 0
0 ∆−1

] [
I 0

−A21A
−1
11 I

]
=

[
I 0

A21A
−1
11 I

] [
I 0
0 I

] [
I 0

−A21A
−1
11 I

]
=

[
I 0
0 I

]
= I,

and see that A−1 is in fact the inverse of A. Strassen’s modification may now
be used to reduce the needed multiplications [PS09] to allow the inversion to
be calculated quicker than O(n3). Similarly to Strassen’s algorithm for multi-
plication the inversion requires the use of intermediate matrices. In order, the
calculations required for one recursion are

1. M1 = A−1
11 2. M2 = A21M1

3. M3 = M1A12 4. M4 = A21M3

5. M5 = M4 −A22 6. M6 = M−1
5

7. (A−1)12 = M3M6 8. (A−1)21 = M6M2

9. M7 = M3(A−1)21 10. (A−1)11 = M1 −M7

11. (A−1)22 = −M6.

Subsequent recursions down to a block size of 1 are needed in steps 1. and 6.,
since those are the only steps that require an inversion. Otherwise, 6 multipli-
cations and 3 additions are needed. In terms of complexity, we observe that
the most complex operation is matrix multiplication, thus the complexity of
the inversion will be approximately the complexity of the matrix multiplication.
For example, using Strassen’s multiplication algorithm for the multiplications
would give a complexity of Olog2 7 for calculating the inverse of a large enough
matrix.

5 Coppersmith-Winograd and Derivatives
The Coppersmith-Winograd algorithm is another algorithm targeted at reducing
the complexity of matrix multiplication. The algorithm relies on checking the
validity of a certain matrix multiplication using properties of tensor products,
and achieves a complexity of O2.496 [Wil14]. Multiple improvements have been
made to the algorithm since, and have improved the theoretical complexity to
as low as ≈ O2.37 [Wil14]. These algorithms are plagued however by worse
caching issues and are even more difficult to implement on modern hardware,
so they have no real use. Even the asymptomatic complexity shows that it is
not practical to multiply matrices of under size 1000 in many cases.

7



6 Conclusion
The algorithms presented by Strassen and others clearly provide significant
asymptomatic speedups when compared to typical naive matrix multiplication.
We have also seen through the work of Strassen that matrix inversion can occur
in O(mul(n)) time, providing significant speedup when solving linear systems of
a large size. This is one of the crucial reasons to speed up matrix multiplication;
it is a good idea to create implementations of matrix multiplication that run
quickly when dealing with large dense linear systems. Unfortunately in trian-
gular matrix multiplication Strassen’s falls behind, and given the usefulness of
a single tool to perform matrix multiplication it is clear why the naive method
is the most commonly used metod of matrix multiplication.

References
[Bar06] Gregory V. Bard. “Achieving a log(n) Speed Up for Boolean Matrix

Operations and Calculating The Complexity of the Dense Linear
Algebra step of Algebraic Stream Ciper Attacks and of Integer Fac-
torization Methods”. In: IACR E-PRINT 2006 (2006), p. 163.

[BH74] James R. Bunch and John E. Hopcroft. “Triangular Factorization
and Inversion by Fast Matrix Multiplication”. In: Mathematics of
Computation 28.125 (1974), pp. 231–236. issn: 00255718, 10886842.
url: http://www.jstor.org/stable/2005828.

[DN] Paolo D’alberto and Alexandru Nicolau. “Using Recursion to Boost
ATLAS’s Performance”. In: Lecture Notes in Computer Science 4759
(). doi: https://doi.org/10.1007/978-3-540-77704-5_12.

[GL13] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Baltimore, Maryland: The Johns Hopkins University Press, 2013.
isbn: 978-1421407944.

[Hua+16] Jianyu Huang et al. “Strassen’s Algorithm Reloaded”. In: Proceed-
ings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. SC ’16. Salt Lake City,
Utah: IEEE Press, 2016. isbn: 9781467388153.

[PS09] Marko D. Petković and Predrag S. Stanimirović. “Generalized ma-
trix inversion is not harder than matrix multiplication”. In: Journal
of Computational and Applied Mathematics 230.1 (2009), pp. 270–
282. issn: 0377-0427. doi: https://doi.org/10.1016/j.cam.
2008.11.012. url: https://www.sciencedirect.com/science/
article/pii/S0377042708006237.

[Wil14] Virginia Williams. “Breaking the Coppersmith-Winograd barrier”.
In: (Sept. 2014).

8


