The Use of Matrix Decompositions to Initialize Artificial Neural Networks

Anna Van Boven
University of Puget Sound

May 2, 2021

Neural Networks

Neural Networks

■ An Artificial neural network "learns" a training data set so that it can predict the output of other similar data points.
■ Supervised learning $=$ labels for data are known. Algorithms "learn" how to label new data.

- Weight matrix holds weights between two layers : $[W]_{i j}$ holds weight of X_{i} sending to perceptron j.
■ Update weights using backpropogation.
- Optimal strategy for initializing weights for a neural network is unknown.

Example: Political Party Prediction

$$
X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right]
$$

- Each column represents a politician.
- Each row represents an issue.
- $X_{i j}$ represents how politician j voted on issue i.

■ 1 is a yea vote, 0 is a nay vote.

- T_{i} represents the party affiliation of politician i.
- 1 is Democrat, 0 is Republican.

Singular Value Decompositions to Initialize Weights

Goal

$$
\min \|T-W X\|_{F}
$$

Ideally, $\exists W$ where $W X=T$.
Let $W=T \hat{X}$, where \hat{X} is SVD pseudoinverse of X.
Let the singular value decomposition, $X=U \Sigma V^{T}$ be rewritten:

$$
U=\left[\begin{array}{ll}
U_{r} & U_{m-r}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right] \quad V=\left[\begin{array}{ll}
V_{r} & V_{n-r}
\end{array}\right]
$$

Let $W=T V_{r} \Sigma_{r}^{-1} U_{r}^{*}$. Then, $W X \approx T$.

Political Party Example: SVD

The matrix X has a rank of 3 .
$U=\left[\begin{array}{ccccc}-0.67 & 0.37 & -0.64 & 0 & 0 \\ -0.45-0.52 & 0.17 & -0.61 & -0.36 \\ 0 & 0 & 0 & -0.51 & 0.86 \\ -0.38 & 0.57 & 0.73 & -0 & -0 \\ -0.45-0.52 & 0.17 & 0.61 & 0.36\end{array}\right] \Sigma=\left[\begin{array}{cccc}2.8 & 0 & 0 & 0 \\ 0 & 1.21 & 0 & 0 \\ 0 & 0 & 0.830 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad V=\left[\begin{array}{cccc}-0.38 & 0.77 & 0.1 & 0.5 \\ -0.24 & 0.3 & -0.78 & -0.5 \\ -0.7 & -0.08 \\ -0.56-0.55 & -0.36 & -0.5\end{array}\right]$
$U_{r}=\left[\begin{array}{ccc}-0.67 & 0.37 & -0.64 \\ -0.45-0.52 & 0.17 \\ 0 & 0 & 0 \\ -0.38 & 0.57 & 0.73 \\ -0.45 & 0.52 & 0.17\end{array}\right]$

Autoencoders

The goal of autoencoders is to reconstruct the original data point.

Non-negative Matrix Factorization (NMF)

■ X is a $m \times n$ data matrix with non-negative entries
■ $X \approx A S, A=m \times p$ matrix, $S=p \times n$ matrix.

- All entries in A and S are non-negative.
- Update A and S with the following equations:

$$
A \leftarrow A \otimes \frac{X S^{T}}{A S S^{T}}
$$

$$
S \leftarrow S \otimes \frac{A^{T} X}{A^{T} A S}
$$

- \otimes denotes entry-wise matrix multiplication.
- Use entry-wise matrix division on the fractions (set denominator values of $0=1$).

Non-negative Matrix Factorization (NMF)

If $X \approx A S$, then $X_{n} \approx A S_{n}$.

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=A\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{p}
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\boldsymbol{A}_{1} s_{1}+\boldsymbol{A}_{2} s_{2}+\cdots+\boldsymbol{A}_{p} s_{p}}
\end{aligned}
$$

- A gives basis of new subspace where each column is a basis element.
- S_{n} gives coordinates of a column X_{n} for the basis in A.

NMFs to Initialize Weights

Let $f\left(\boldsymbol{X}_{n}, W\right)$ be the approximated output for a single data point.

Goal

$\min \sum_{i=0}^{n}\left\|X_{n}-f\left(\boldsymbol{X}_{n}, W\right)\right\|_{F}$
Let A° be the Moore-Penrose pseudoinverse of A :
$A^{\circ}=\left(A^{*} A\right)^{-1} A^{*}$. Then, $S \approx A^{\circ} X$.

$$
\begin{aligned}
\left\|\boldsymbol{X}_{n}-f\left(\boldsymbol{X}_{n}, W\right)\right\| & \approx\left\|\boldsymbol{X}_{n}-A \boldsymbol{S}_{n}\right\| \\
& \approx\left\|\boldsymbol{X}_{n}-A A^{\circ} \boldsymbol{X}_{n}\right\|
\end{aligned}
$$

- The matrix A° is the weight matrix between the input and the bottleneck.
- The matrix $A A^{\circ}$ is used to approximate the data matrix X.

Initializing NMFs

Choosing value of p :
List the singular values of X in descending order.

Goal

The value p is found such that
$S_{p}<\alpha$, and $S_{p+1} \geq \alpha$
for $S_{m}=\frac{\sum_{i=1}^{m} \sigma_{i}}{\sum_{i=1}^{k} \sigma_{i}}$.
The value α can be between 0 and 1 , normally closer to 1 .

Initializing NMFs

Initializing A and S :

Eckhart Young Theorem on Low-Rank Approximation

Let D be an $m \times n$ matrix with singular value decomposition $D=U \Sigma V^{T}$.

$$
U=\left[\begin{array}{ll}
U_{k} & U_{m-k}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{k} & 0 \\
0 & 0
\end{array}\right] \quad V=\left[\begin{array}{ll}
V_{k} & V_{n-k}
\end{array}\right]
$$

The matrix $\hat{D}=U_{k} \Sigma_{k} V_{k}^{T}$ solves $\min \|D-\hat{D}\|_{F}$.
1 Apply the above theorem to data matrix X with $k=p$.
2 Set $A=\left|U_{p}\right|$.
3 Set $S=\left|\Sigma_{p} V_{p}^{T}\right|$.

Political Party Example: Choosing p

$$
\sigma=\left[\begin{array}{llll}
2.7986 & 1.2147 & 0.832 & 0
\end{array}\right] \quad \sum_{i=1}^{4} \sigma_{i}=4.845
$$

Let $\alpha=0.9$.
Goal
Find p where $S_{p}<0.9$, and $S_{p+1}>=0.9$.

p	S_{p}	S_{p+1}
1	.577	.828
2	.828	1

With $\alpha=0.9$, the table shows $p=2$.

Political Party Example: Initializing A and S

$$
\begin{array}{ll}
U_{p}=\left[\begin{array}{cc}
-0.67 & 0.37 \\
-0.45 & -0.52 \\
0 & 0 \\
-0.38 & 0.57 \\
-0.45 & -0.52
\end{array}\right] & \Sigma_{p}=\left[\begin{array}{cc}
2.8 & 0.0 \\
0 & 1.21
\end{array}\right] V_{p}=\left[\begin{array}{cc}
-0.38 & 0.77 \\
-0.24 & 0.3 \\
-0.7 & -0.08 \\
-0.56 & -0.55
\end{array}\right] \\
A_{i}=\left[\begin{array}{cc}
0.67 & 0.37 \\
0.45 & 0.52 \\
0 & 0 \\
0.38 & 0.57 \\
0.45 & 0.52
\end{array}\right] & S_{i}=\left[\begin{array}{ll}
1.050 .67 & 1.95 \\
0.940 .57 \\
0.36 & 0.1 \\
0.67
\end{array}\right] \\
A=\left[\begin{array}{cc}
0.360 .78 \\
0.45 & 0 \\
0 & 0 \\
1.49 & 0.6 \\
0.45 & 0.0
\end{array}\right] & S=\left[\begin{array}{c}
0.050 .142 .192 .25 \\
1.4 \\
0.750 .540 .17
\end{array}\right]
\end{array}
$$

Political Party Example: NMFs

$$
\begin{array}{ll}
X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] & A A^{\circ} X=\left[\begin{array}{cccc}
1.03 & 0.88 & 0.63 & 0.48 \\
0.06 & -0.2 & 0.36 & 0.11 \\
0 & 0 & 0 & 0 \\
0.96 & 0.15 & 1.47 & 0.66 \\
0.06 & -0.2 & 0.36 & 0.11
\end{array}\right] \\
S=\left[\begin{array}{llll}
0.05 & 0.14 & 2.19 & 2.25 \\
1.4 & 0.75 & 0.54 & 0.17
\end{array}\right] \quad A^{\circ} X=\left[\begin{array}{cccc}
0.13 & -0.45 & 0.81 & 0.24 \\
1.27 & 1.35 & 0.44 & 0.51
\end{array}\right]
\end{array}
$$

Analysis

- Most common technique is random initialization:
- No technique discussed can put a bound on distance between initialization and optimal weights
- Computing SVD has a runtime $O\left(\min \left(m n^{2}, m^{n}\right)\right)$. Could slow down runtime of weight computation.
- SVD technique can only be used on single layer neural network.

■ NMF technique only works on non-negative data.

Sources

- Atif, Syed Muhammad, et al. "Improved SVD-Based Initialization for Nonnegative Matrix Factorization Using Low-Rank Correction." ScienceDirect, vol. 122, 1 May 2019.
- Barata, J. C. A., and M. S. Hussein. "The Moore-Penrose Pseudoinverse. A Tutorial Review of the Theory." Cornell University, 31 Oct. 2011.
- Flenner, Jennifer, and Blake Hunter. "A Deep Non-Negative Matrix Factorization Neural Network." Claremont Mckenna College, 2016.

■ Jordan, Jeremy. "Introduction to Autoencoders." Jeremyjordan, 19 Mar. 2018, www.jeremyjordan.me/autoencoders/.

- Schafer, Casey. "The Neural Network, Its Techniques and Applications." Whitman University, 12 Apr. 2016.
- Lee, D., Seung, H. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791 (1999). https://doi.org/10.1038/44565
- Gillis, N. (2014). The why and how of nonnegative matrix factorization. Regularization, Optimization, Kernels, and Support Vector Machines, 12, 257-291.
- Gillis, N., amp; Glinuer, F. (2012). A multilevel approach for nonnegative matrix factorization. ScienceDirect, 236(7). Retrieved 2021, from https://www.sciencedirect.com/science/article/pii/S0377042711005334
- Nagyfi, R. (2018, September 4). The differences between Artificial and Biological Neural Networks [Web log post]. Retrieved from https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
- Qiao, H. (2014, October 10). New SVD based initialization strategy for Non-negative Matrix Factorization [PDF]. Ithaca, NY: Cornell University.
- Squires, S., Prugel-Bennett, A., Miranjan, M. (2017). Rank Selection in Nonnegative Matrix Factorization using Minimum Description Length [PDF]. Southampton, UK: University of Southampton.
■ Https://medium.com/@datamonsters/artificial-neural-networks-in-natural-language-processingbcf62aa9151a [Web log post]. (2017, August 17). Retrieved 2021, from Applications of Artificial Neural Networks in Natural Language Processing

