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‘A Wine Tasting Party'

Suppose you are hosting a wine-tasting party for 33 guests.
There will be 22 different wines available for tasting.

Each guest receives their own personalized “tasting card”
with 8 wines listed, and so is obligated to try each of the

wines listed on their card during the party.

At the end of the night we will ask for comments on
“head-to-head” pairings (groups of 2) of various wines. We
wish to have exactly 4 guests able to comment on each

pair.

This is an example of a “Combinatorial Design”
Parameters are: t-(v, k, A)

Begin with a base set of v items.

Choose a number of subsets of size k (“blocks”).

We wish this collection of subsets to have the following

defining property:

Every set of size t should be contained in exactly A blocks.
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A 2—(22, 8, 4) Design

Wine-tasting party is a 2—(22, 8, 4) design:

v = 22 wines

k = 8 wines on each tasting card

t = 2 pairs of wines for comment

A = 4 tasting cards containing each possible pair

Requires b = 33 tasting cards (guests)

Nobody knows if such a design exists, or not.

Brute Force:

(282) = 319770 possible tasting cards

(31%70) >~ 1014 ways to select 33 of the possible cards

(107 atoms in the universe?)

Check (222) = 231 pairs to see if A =4
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‘Classes of Design'

Steiner Triple Systems A Steiner triple system is a
2—(v, 3, 1) design. Single parameter. Studied extensively.

Regular Graph A regular graph of degree r on n
vertices is a 1—(n, 2, r) design.
The base set is the v = n vertices.

Every vertex (sets of size t = 1) is contained in exactly
A = r blocks (edges are blocks of size k = 2).

Configurations Subgraphs of regular graphs are just
collections of edges, i.e. collections of blocks. The analogue

Y

for a design is a “configuration,” a collection of blocks.
They can be classified into equivalence classes according to

isomorphism and then counted.

University of the West Indies March 2003 4



‘Counting Configurations in Designs'

Main Result

e There exist linear relations among the sizes of
isomorphism classes of configurations in a design.

e Coeflicients are functions of v and A, and so apply
equally well to any, and all, designs with common
values of ¢t and k.

e The analogue of a matching in a graph is a configuration
composed of “parallel” blocks, i.e. pairwise disjoint
blocks (tasting cards with no common wines).

e The opposite end of the spectrum is a “tight”
configuration, which has a lot of intersection among the
blocks. More precisely, every block has more than ¢
points that are on at least two of the blocks. (For
regular graphs this translates to more than 2 vertices of
degree 2 or greater in each edge, i.e. no degree 1
vertices).

e Knowing the size of each isomorphism class of the tight
configurations will yield the size of any of the other
isomorphism classes. So the set of tight designs is

known as a generating set.
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Linear Relations for 2 — (v, 4, \)

v
(2) A Co,0,1

6()\ — 1) 61’4,1
4(7) — 4))\ C1,4,1

v—4
( 9 ))\01,4,1

3(A—2)Ca5.1
6(A—1)Ca5.1
AC25.1
3(v—=5)ACa51
(A—2)C261
8(A—1)Cap.1
2(A—1)Cap,1
4XCa6,1

2(v —=5)ACa51
INCa 71

(U ; 5))\62,5,1
(v—T)ACa,71
16ACa 51

12()\ — 1)6278,1
8(”0 — 8))\62’8,1

v—38
< 5 >)\62,8,1

University of the West Indies

6C14,1

6Ca5.1+2C26,1
6Ca5.1 4+ 8Ca6,1+6C271

2C261+6Co71+12C251

3C351+9C361+2C362+C371

12C351 +4C362+2C363+C3 72
3C351+C363+Cs73
9C36,1+4C362+C363+4C371+2C372+3C331
C362+2C371+3C3382
4C362+6C363+4C371+2C372+6C374+2C3383
2C363+6C364+C372+2C375+2C384
Cs62+4C363+12C364+3C374+4C375+Cs35
2C362+2C363+2C372+4C373+3C3356
3C372+4C381+2C383+2C39,1
C372+6C373+2C375+2C381+2C385+3C386+C392
2C372+6C373+4C375+C383+4C385+3C393

C371+C3724+C373+3C381+3C386+6C394

2C381+C383+4C391+9C310,1
4C384+3C386+2C392+ C3.10,2
2C384+3C386+C392+6C394+2C3103
3C392+6C394+4C3102+8C3103+6C311,1

C310,2+2C3,103+6C311,1 +18C3.12.1
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Cia1
Ca6,1
Co71

Cag1

Csa,71
Cs,72
C37.3

C3 8,1
Cs3s,2
C38,3

C38.4
C38,5

C3s6

C39,1

Cs39,2

6379,3

63,9,4

C3,10,1

C3,10,2

C3,10,3

Cs,11,1

C3,12,1

Solutions

A (—1 + ’U) ’UCQ’O’]
12

—14+X) A (-1
(=14 X) (4 +v)vCo,o,1_362,5,1

AB+A(-104+v)) (—1+v) vCooa
18
A(—1+v)v (=364 X (88—17v+v?)) Coo,1
288

3(=2+4+X) Ca51—3C351—9C361 —2C362
6 (—1+X) Ca51—12C351 —4C362—2C363
AC251—3C351—C36,3

(124X (—134v)) Co51 +12C351+9C36,1 +4C36,2 +C36,3
A(2=3X+2%) (=1+0) vCoo,

12
(=1+X)*A (=1 4v) vCop1 + (30 —24X) Ca51 +18C351 + 18C361 +6Ca62 — Ca63 — 3Ca7.4

-1+ 2\ —1+v)vC
( ) (4 ) vCoos +(6—6X)Ca51+6C351+2C362—3Cs364—Cs75

(=142 A (—1+v) vCo0,1 — 12ACos5,1 — C362 — 4Cs3,63 — 12C3.64 — 3Cs7.4 — 4C375

26+ (—13+ C
( ( 3 v)) 2’5’1+12(33,5,1+2C3,6,2+2C3,6,3

(=14+XA) A (124X (16 +v)) (-1 4+v) vCop1
6

+3Ca5,1

—Cap,1

+(6—3X) Ca51+2C351+6C361+Cs6,2

+ (—54 -2\ (—25 + U)) C2,5’1 — 240375’1 — 36 03,6,1 - 8C3,672 +

2C363+3Cs,74

(=14 A) A (64 A (=16 4+ ) (=1 +v) vCo.0.
3

8Cs,63+24C36,4+6C374+6C375

A(=2+ 18X+ A% (=204 v)) (=1 +v) vCo0,
6

9C3,6,3+16C364+5C374+4C375

(_6+ A (140 — 210 + v?)

+ (—48 + A (82 — 4’0)) 0275’1 —30 C3’5,1 — 18 C3,6,1 — 80376’2 +

+(—6+27X) Ca51+8C351—6C361+2C362+

12

A(—1+v) v (126 +18 X (—19+v) + A? (244 — 29v +v?)) Co,0.1

162
6Cs5,1+12C36,1+2C36,2—C363—C3,74
A(—1+v)v (54+ 12X (=22 +v) + A% (262 — 29v +v?)) Coo,1
18
36C36,1+2C362—22C363 —36C364 —12C374 —8C375

A (-1t v)w (724X (204 - 250 0%) — A (276~ 250 +0%)) Coor <36 _ A (25225 ”2)> Cos1+

) Ca51—9C351—3C361—2C362—Cs6,3

+ (18 + X (—19+v)) Ca51 +

+ (60 + A (—130 + 61})) 6275,1 +

48 4
18C35,1 +18C3,6,1 +5C362 —4C363 —9C364 —3C374 —2C375
A(=1+v) v (—648+6X (544 — 41w+ v?) + A2 (—3448 + 570v — 390> + v?)) Co0,1

216 +
A (1544 — 119 v + 3 v?
(—58 + ( 12 ) ) Ca51—36C361—2C362+17Cs363+24C364+9C374+5C375
A (—1+v) v (6912 — 108 X (368 — 33 v+ v?) + A? (48224 — 10312v + 1017 v* — 50 v* + v*)) Co 0,1 N
10368

(144 — X (368 — 33v +v?)) Ca51
12

—2C351+8C361—4C363—5C364—2C374—C375
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‘ History I

RAB, EJF, 1994 Generating sets for m-line
configurations of 1 — (v, 2, \) designs (i.e. regular graphs)
for all m, v and A.

Grannell, Griggs, Mendelsohn, 1995 Linear bases
for m-line configurations of 2 — (v, 3, 1) designs (i.e. Steiner
triple systems) for m < 4 and all v.

Horak, Phillips, Wallis, Yucas (Generating sets for
m-line configurations in Steiner triple systems for all m and
v. Linear bases for m-line configurations of Steiner triple
systems with m < 6 and all v. Indicate that generating sets
can be found for all k£ (i.e. Steiner systems).

Danziger, Grannell, Griggs, Mendelsohn, 1996
Explicit linear equations relating the fifty-six 5-block
configurations of a Steiner triple system, valid for all v.

Urland Linear basis for 7-line configurations of Steiner

triple systems, for all v.

RAB, 1997 Generating sets for m-line configurations of
t-(v, k, \) designs for all m, ¢, v, k and A\. Automated
procedure to determine the linear equations explicitly.
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