Counting Subgraphs in Regular Graphs

Rob Beezer
beezer@ups.edu
Department of Mathematics and Computer Science University of Puget Sound

Discrete Mathematics Workshop
University of Washington, Tacoma
October 14, 2006

Problem Statement

For a regular graph on n vertices, of degree r, determine the number of matchings with m edges.

- A matching is a subgraph of disjoint edges.

Problem Statement

For a regular graph on n vertices, of degree r, determine the number of matchings with m edges.

- A matching is a subgraph of disjoint edges.
- Regularity is key!

Problem Statement

For a regular graph on n vertices, of degree r, determine the number of matchings with m edges.

- A matching is a subgraph of disjoint edges.
- Regularity is key!
- Notation:

$$
\{\llbracket!\} \text { is the number of subgraphs that are 2-matchings. }
$$

1-Matchings

EZ

$$
\{1\}=\frac{\pi}{2}
$$

- Depends only on n and r.
- Independent of the particular graph.

2-Matchings

Choose a vertex, choose two incident edges:

$$
\{\bigwedge\}=n\binom{r-1}{2}
$$

2-Matchings

Choose a vertex, choose two incident edges:

$$
\{\bigwedge\}=n\binom{r-1}{2}
$$

Total of all 2-edge subgraphs:

$$
\left(\frac{(\pi}{2}\right)=\{\wedge\}+\{!!\}
$$

2-Matchings

Choose a vertex, choose two incident edges:

$$
\{\widehat{\}}\}=n\binom{r-1}{2}
$$

Total of all 2-edge subgraphs:

$$
\binom{\frac{n r}{2}}{2}=\{\downharpoonleft\}+\{\emptyset \cdot\}
$$

Solve:

$$
\{\mathfrak{l}\}=\frac{1}{8} n r(n r-4 r+2)
$$

- Depends only on n and r.
- Independent of the particular graph.

3-Matchings

Five possible subgraphs on three edges. How many of each?

We are after the number of 3-matchings. Eventually.

3-Matchings, Part I

Choose a vertex, choose three incident edges:

$$
\{\downarrow\}=n\binom{r-1}{3}
$$

3-Matchings, Part I

Choose a vertex, choose three incident edges:

$$
\{\preceq\}=n\binom{r-1}{3}
$$

Start with a 2-matching, choose one of 4 vertices, add one of $r-1$ incident edges. Builds paths of length 3, and subgraphs with a path of length 2 and a disjoint edge.

Double-counts each of these though!

$$
4(r-1)\{!\cdot\rfloor\}=2\{\square!\}+2\{\overparen{\bullet}\rfloor\}
$$

3-Matchings, Part II

Start with a path of length 2, choose one of 2 end vertices, add one of $r-1$ incident edges. Builds paths of length 3, and triangles.

Double-counts paths, overcounts triangles by a factor of 6 .

$$
2(r-1)\{\bigwedge\}=2\{\square,\}+6\{\bigwedge\}
$$

3-Matchings, Part II

Start with a path of length 2, choose one of 2 end vertices, add one of $r-1$ incident edges. Builds paths of length 3, and triangles.

Double-counts paths, overcounts triangles by a factor of 6 .

$$
2(r-1)\{\bigwedge\}=2\{\square \square\}+6\{\Omega
$$

Sum all subgraphs on 3 edges:

3-Matchings, Solution

Solve 4 linear equations in 5 unknowns:
$\{\llbracket!\llbracket\}=\frac{1}{48} n r\left(n^{2} r^{2}-12 n r^{2}+40 r^{2}+6 n r-48 r+16\right)-\{\triangle\}$

- Depends on n and r and the number of triangles.
- Independent of the particular graph.

General Approach

Can't keep this up. Need a systematic approach.

- Begin with a subgraph with m edges and a vertex of degree 1 .

General Approach

Can't keep this up. Need a systematic approach.

- Begin with a subgraph with m edges and a vertex of degree 1 .
- Remove edge incident to degree 1 vertex. Call other endpoint w.
- Identify vertices "isomorphic" to w.

General Approach

Can't keep this up. Need a systematic approach.

- Begin with a subgraph with m edges and a vertex of degree 1 .
- Remove edge incident to degree 1 vertex. Call other endpoint w.
- Identify vertices "isomorphic" to w.
- Add back a single edge, attaching one end at vertices like w.

General Approach

Can't keep this up. Need a systematic approach.

- Begin with a subgraph with m edges and a vertex of degree 1 .
- Remove edge incident to degree 1 vertex. Call other endpoint w.
- Identify vertices "isomorphic" to w.
- Add back a single edge, attaching one end at vertices like w.
- Determine the types of subgraphs formed.
- Determine the amount of overcounting.

Example, 4 Edges

Begin with a path having 4 edges.
Remove an edge incident to a vertex of degree 1. Label other endpoint w. In the path on 3 edges that remains, there is one other vertex like w.

Add back an edge at w, considering all vertices as possibilities for the other end of the new edge.

Example, 4 Edges

What subgraphs result? How many of each? Overcounting factor?

Example, 4 Edges

2 vertices like w.
$r-1$ ways to attach back an edge.
Counting a set of subgraphs (each with a labeled vertex at w) in two different ways yields:

$$
2(r-1)\{\square\}=2\{\square \square+2\{\square\}+8\{\square \square
$$

System of Linear Equations

- Create a system of linear equations in subgraph counts.
- Coefficients are constants, functions of n and r.

System of Linear Equations

- Create a system of linear equations in subgraph counts.
- Coefficients are constants, functions of n and r.
- Apply to any regular graph.

System of Linear Equations

- Create a system of linear equations in subgraph counts.
- Coefficients are constants, functions of n and r.
- Apply to any regular graph.
- Subgraphs with no degree 1 vertices are "free" variables.
- Subgraphs with degree 1 vertices are dependent variables.

System of Linear Equations

- Create a system of linear equations in subgraph counts.
- Coefficients are constants, functions of n and r.
- Apply to any regular graph.
- Subgraphs with no degree 1 vertices are "free" variables.
- Subgraphs with degree 1 vertices are dependent variables.
- Order subgraph types on edges, then number of degree 1 vertices.
- System has lower-triangular coefficient matrix, nearly homogeneous.

4-Matchings

All subgraphs on 4 edges or less. w is adjacent to open-circle vertex.

$$
\begin{aligned}
g_{0,0,1} & =1 \\
n r g_{0,0,1} & =2 g_{1,2,1} \\
2(r-1) g_{1,2,1} & =2 g_{2,2,1} \\
(n-2) r g_{1,2,1} & =2 g_{2,2,1}+4 g_{2,4,1} \\
2(r-1) g_{2,2,1} & =6 g_{3,0,1}+2 g_{3,2,1} \\
1(r-2) g_{2,2,1} & =3 g_{3,3,1} \\
4(r-1) g_{2,4,1} & =2 g_{3,2,1}+2 g_{3,4,1} \\
(n-4) r g_{2,4,1} & =2 g_{3,4,1}+6 g_{3,6,1} \\
3(r-2) g_{3,0,1} & =1 g_{4,1,1} \\
(n-3) r g_{3,0,1} & =1 g_{4,1,1}+2 g_{4,2,1} \\
2(r-1) g_{3,2,1} & =8 g_{4,0,1}+2 g_{4,1,1}+2 g_{4,2,2} \\
2(r-2) g_{3,2,1} & =2 g_{4,1,1}+2 g_{4,3,1} \\
2(r-1) g_{3,4,1} & =6 g_{4,2,1}+2 g_{4,2,2}+2 g_{4,4,1} \\
1(r-3) g_{3,3,1} & =4 g_{4,4,2} \\
2(r-1) g_{3,4,1} & =2 g_{4,2,2}+1 g_{4,3,1}+4 g_{4,4,3} \\
1(r-2) g_{3,4,1} & =1 g_{4,3,1}+3 g_{4,5,1} \\
6(r-1) g_{3,6,1} & =2 g_{4,4,1}+2 g_{4,6,1} \\
(n-6) r g_{3,6,1} & =2 g_{4,6,1}+8 g_{4,8,1}
\end{aligned}
$$

$$
\begin{aligned}
& g_{0,0,1}=1 \\
& g_{1,2,1}=\frac{n r}{2} \\
& g_{2,2,1}=\frac{n(-1+r) r}{2} \\
& g_{2,4,1}=\frac{n r(2-4 r+n r)}{8} \\
& g_{3,2,1}=\frac{n(-1+r)^{2} r}{2}-3 g_{3,0,1} \\
& g_{3,3,1}=\frac{n(-2+r)(-1+r) r}{6} \\
& g_{3,4,1}=\frac{n(-1+r) r(4-6 r+n r)}{4}+3 g_{3,0,1} \\
& g_{3,6,1}=\frac{n r\left(16-48 r+6 n r+40 r^{2}-12 n r^{2}+n^{2} r^{2}\right)}{48}-g_{3,0,1} \\
& g_{4,1,1}=(-6+3 r) g_{3,0,1} \\
& g_{4,2,1}=\frac{\left(3-3 r+\frac{n r}{2}\right) g_{3,0,1}}{g_{4,2,2}=\frac{n(-1+r)^{3} r}{2}+(9-6 r) g_{3,0,1}-4 g_{4,0,1}} \\
& g_{4,3,1}=\frac{n(-2+r)(-1+r)^{2} r}{2}+(12-6 r) g_{3,0,1} \\
& g_{4,4,1}=\frac{n(-1+r)^{2} r(6-8 r+n r)}{4}+\left(-21+18 r-\frac{3 n r}{2}\right) g_{3,0,1}+4 g_{4,0,1} \\
& g_{4,4,2}=\frac{n(-3+r)(-2+r)(-1+r) r}{24} \\
& g_{4,4,3}=\frac{n(-1+r)^{2} r(8-9 r+n r)}{8}+(-9+6 r) g_{3,0,1}+2 g_{4,0,1} \\
& g_{4,5,1}=\frac{n(-2+r)(-1+r) r(6-8 r+n r)}{12}+(-6+3 r) g_{3,0,1} \\
& g_{4,6,1}=\frac{n(-1+r) r\left(40-104 r+10 n r+72 r^{2}-16 n r^{2}+n^{2} r^{2}\right)}{16}+\left(24-21 r+\frac{3 n r}{2}\right) g_{3,0,1}-4 g_{4,0,1} \\
& g_{4,8,1}=\frac{n r}{384}\left(240-960 r+76 n r+1344 r^{2}-240 n r^{2}+12 n^{2} r^{2}-672 r^{3}+208 n r^{3}-24 n^{2} r^{3}+n^{3} r^{3}\right)+\left(-6+6 r-\frac{n r}{2}\right) g_{3,0,1}+g_{4,0,1}
\end{aligned}
$$

4-Matchings Solution

$$
\begin{array}{r}
\{\llbracket \llbracket\}=\frac{n r}{384}\left(240-960 r+76 n r+1344 r^{2}-240 n r^{2}+\right. \\
\left.12 n^{2} r^{2}-672 r^{3}+208 n r^{3}-24 n^{2} r^{3}+n^{3} r^{3}\right)+ \\
\left(-6+6 r-\frac{n r}{2}\right)\{\Omega\}+\{\square\}
\end{array}
$$

- Applys to any regular graph.
- Depends on n, r, and the number of triangles and squares.

Designs

The pair (V, \mathcal{B}) is a $t-(v, k, \lambda)$ design if V is a set of v elements called points (or vertices) and \mathcal{B} is a set of k element subsets of V called blocks (or lines) with the property that every t-element subset of V is a subset of exactly λ blocks from \mathcal{B}.

Designs

The pair (V, \mathcal{B}) is a $t-(v, k, \lambda)$ design if V is a set of v elements called points (or vertices) and \mathcal{B} is a set of k element subsets of V called blocks (or lines) with the property that every t-element subset of V is a subset of exactly λ blocks from \mathcal{B}.

Fano Plane
Projective Plane of Order 2
Steiner Triple System
2-(7, 3, 1) Design

Blocks:
123345567257147367246

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1$) designs.

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1$) designs.
- A regular graph is just a 1-($n, 2, r$) design.

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1$) designs.
- A regular graph is just a 1-($n, 2, r$) design.
- In a design, subgraphs are just subsets of blocks, "configurations."

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1)$ designs.
- A regular graph is just a 1-($n, 2, r$) design.
- In a design, subgraphs are just subsets of blocks, "configurations."
- Same types of linear equations.
- Coefficients depend on v and λ (for a fixed choice of t and k).

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1$) designs.
- A regular graph is just a 1-($n, 2, r$) design.
- In a design, subgraphs are just subsets of blocks, "configurations."
- Same types of linear equations.
- Coefficients depend on v and λ (for a fixed choice of t and k).
- "Free" variables are configuration counts for configurations where every block has more than t points that occur in two or more blocks of the configuration.

Generalize to Designs

- Horak, et al; results for Steiner Triple Systems, 2-($v, 3,1$) designs.
- A regular graph is just a 1-($n, 2, r$) design.
- In a design, subgraphs are just subsets of blocks, "configurations."
- Same types of linear equations.
- Coefficients depend on v and λ (for a fixed choice of t and k).
- "Free" variables are configuration counts for configurations where every block has more than t points that occur in two or more blocks of the configuration.
- For graphs, this is "every edge has 2 vertices of degree 2 or more." i.e. no vertices of degree 1.

Applications

- Graphs of high girth lack small cycles.
- Small subgraphs are acyclic.
- "Free" variables are all zero.
- Counts for small subgraphs are determined just by n and r.

Applications

- Graphs of high girth lack small cycles.
- Small subgraphs are acyclic.
- "Free" variables are all zero.
- Counts for small subgraphs are determined just by n and r.
- Existence of designs?
- Conclude that configuration counts are negative or fractional?

Bibliography

- R.A. Beezer, The number of subgraphs of a regular graph Congressus Numerantium, 100:89-96, 1994
- P. Horak, N.K.C. Phillips, W.D. Wallis, and J.L. Yucas Counting frequencies of configurations in Steiner triple systems Ars Combinatoria, 46:65-75, 1997
- M.J. Grannell, T. S. Griggs, Configurations in Steiner triple systems Research Notes in Math. 403, 103-126, 1999
- R.A. Beezer, Counting configurations in designs Journal of Combinatorial Theory, Series A, 96:341-357, 2001

