Solving Sudoku with Dancing Links

Rob Beezer
beezer＠pugetsound．edu
Department of Mathematics and Computer Science University of Puget Sound
Tacoma，Washington USA
African Institute for Mathematical Sciences
October 25， 2010

Available at http：／／buzzard．pugetsound．edu／talks．html

Example: Combinatorial Enumeration

Create all permutations of the set $\{0,1,2,3\}$

- Simple example to demonstrate key ideas
- Creation, cardinality, existence?
- There are more efficient methods for this example

Brute Force Backtracking

BLUE $=$ Solution
RED $=$ Backtrack

root	012	0133	021	0233	031	03	102
0	0122	013	0213	023	0313	033	1021
00	012	01	021	02	031	03	102
0	0123	0	02	0	03	0	1022
01	012	02	022	03	032	root	102
010	01	020	02	030	0320	1	1023
01	013	02	023	03	032	10	102
011	0130	021	0230	031	0321	100	
01	013	0210	023	0310	032	10	
012	0131	021	0231	031	0322	101	
0120	013	0211	023	0311	032	10	
012	0132	021	0232	031	0323	102	
0121	013	0212	023	0312	032	1020	

A Better Idea

- Avoid the really silly situations, such as: 101
- "Remember" that a symbol has been used already
- Additional data structure: track "available" symbols
- Critical: must maintain this extra data properly
- (Note recursive nature of backtracking)

Sophisticated Backtracking

BLACK $=$ Forward

\{0,1,2,3	\{\}
0 \{1,2,3\}	021 \{3\}
01 \{2,3\}	02 \{1,3\}
012 \{3\}	023 \{1\}
0123 \{\}	0231 \{\}
012 \{3\}	023 \{1\}
01 \{2,3\}	02 \{1,3\}
013 \{2\}	0 \{1,2,3\}
0132 \{\}	03 \{1,2\}
013 \{2\}	031 \{2\}
01 \{2,3\}	0312 \{\}
0 \{1,2,3\}	031 \{2\}
02 \{1,3\}	03 \{1,2\}
021 \{3\}	032 \{1\}

BLUE $=$ Solution
RED $=$ Backtrack

Depth-First Search Tree

Algorithm

$\mathrm{n}=4$
available=[True]*n \# [True, True, True, True]
perm $=[0] * \mathrm{n} \quad \#[0,0,0,0]$
def bt(level):
for x in range(n):
if available[x]:
avalable $[x]=$ False
perm[level]=x
if level+1 $=\mathrm{n}$: print perm
bt(level+1)
available[x]=True

Sudoku Basics

- n^{2} symbols
- $n^{2} \times n^{2}$ grid
- n^{2} subgrids ("boxes") each $n \times n$
- Classic Sudoku is $n=3$
- Each symbol once and only once in each row
- Each symbol once and only once in each column
- Each symbol once and only once in each box
- The grid begins partially completed
- A Sudoku puzzle should have a unique completion

Example

Sudoku via Backtracking

- Fill in first row, left to right, then second row, ...
- For each blank cell, maintain possible new entries
- As entries are attempted, update possibilities
- If a cell has just one possibility, it is forced
- Lots to keep track of, especially at backtrack step

Sudoku via Backtracking

- Fill in first row, left to right, then second row, ...
- For each blank cell, maintain possible new entries
- As entries are attempted, update possibilities
- If a cell has just one possibility, it is forced
- Lots to keep track of, especially at backtrack step
- Alternate Title: "Why I Don't Do Sudoku"

Top row, second column: possibilities?

$\{1,2,3,6,7\}$
$\{1,2,4,7,8\} \longrightarrow\{1,2,4,7,8\} \cap\{1,2,3,6,7\}=\{1,2,7\}$

Suppose we try 2 first.
Seventh row, second column: possibilities?

$\{2,3,6,8,9\}$

$\{1,4,7,8\} \longrightarrow\{1,4,7,8\} \cap\{2,3,6,8,9\}=\{8\}$
One choice!
This may lead to other singletons in the affected row or column.

Exact Cover Problem

- Given: matrix of 0's and 1's
- Find: subset of rows
- Condition: rows sum to exactly the all-1's vector
- Amenable to backtracking (on columns, not rows!)
- Example: (Knuth)

0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Solution

Select rows 1, 4 and 5:

$$
\begin{array}{llllllll}
\Rightarrow & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
& 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
& 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\Rightarrow & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
& & & & & & & \\
& & & \\
& 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Sudoku as an Exact Cover Problem

- Matrix rows are per symbol, per grid location $\left(n^{2} \times\left(n^{2} \times n^{2}\right)=n^{6}\right)$
- Matrix columns are conditions: $\left(3 n^{4}\right.$ total)
- Per symbol, per grid row: symbol in row $\left(n^{2} \times n^{2}\right)$
- Per symbol, per grid column: symbol in column $\left(n^{2} \times n^{2}\right)$
- Per symbol, per grid box: symbol in box $\left(n^{2} \times n^{2}\right)$

Place a 1 in entry of the matrix if and only if
matrix row describes symbol placement satisfying matrix column condition

- Example:

Consider matrix row that places a 7 in grid at row 4, column 9

- 1 in matrix column for " 7 in grid row 4"
- 1 in matrix column for " 7 in grid column 9"
- 1 in matrix column for " 7 in grid box 6 "
- 0 elsewhere

Sudoku as an Exact Cover Problem

- Puzzle is "pre-selected" matrix rows
- Can delete these matrix rows, and their "covered matrix columns"
- $n=3$: 729 matrix rows, 243 matrix columns
- Previous example: Remove 26 rows, remove $3 \times 26=78$ columns
- Select $81-26=55$ rows, from 703, for exact cover (uniquely)
- Selected rows describe placement of symbols into locations for Sudoku solution

Dancing Links

- Manage lists with frequent deletions and restorations
- Perfect for descending, backtracking in a search tree
- Hitotumatu, Noshita (1978, Information Processing Letters)
- "pointers of each already-used element are still active while... removed"
- Two pages, N queens problem
- Donald Knuth listed in the Acknowledgement
- Popularized by Knuth, "Dancing Links" (2000, arXiv)
- Algorithm $\mathrm{X}=$ "traditional" backtracking
- Algorithm DLX = Dancing Links + Algorithm X
- 26 pages, applications to packing pentominoes in a square

Doubly-Linked List

Remove Node "C" From List

$\mathrm{R}[\mathrm{x}]$

Remove Node "C" From List

$$
\operatorname{L[R[x]]}
$$

Remove Node "C" From List

$$
L[R[x]] \quad L[x]
$$

Remove Node "C" From List

$$
\mathrm{L}[\mathrm{R}[\mathrm{x}]] \longleftarrow \mathrm{L}[\mathrm{x}]
$$

Two Assignments to Totally Remove "C"

$$
L[R[x]] \longleftarrow L[x] \quad R[L[x]] \longleftarrow R[x]
$$

Two Assignments to Totally Remove "C"

DO NOT CLEAN UP THE MESS

List Without "C", Includes Our Mess

Restore Node "C" to the List

$\mathrm{R}[\mathrm{x}]$

Restore Node "C" to the List

$L[R[x]]$

Restore Node "C" to the List

$$
L[R[x]] \quad x
$$

Restore Node "C" to the List

$$
L[R[x]] \longleftarrow x
$$

Restore Node "C" to the List

$\mathrm{L}[\mathrm{R}[\mathrm{x}]] \longleftarrow \mathrm{x}$
$R[L[x]] \longleftarrow x$

Restore Node "C" to the List

$L[R[x]] \longleftarrow x$
$R[L[x]] \longleftarrow x$

WE NEED OUR MESS, IT CLEANS UP ITSELF

DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows

DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows
- Loop over rows, for each row choice remove covered columns

DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows
- Loop over rows, for each row choice remove covered columns
- Recursively analyze new, smaller matrix
- Restore rows and columns on backtrack step

Exact Cover Example (Knuth, 2000)

$$
\begin{array}{l|ccccccc}
& A & B & C & D & E & F & G \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
3 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
6 & 0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}
$$

Exact Cover Representation (Knuth, 2000)

Exact Cover Representation (Knuth, 2000)

- Cover column A
- Remove rows 2, 4

	A	B	C	D	E	F	G
1	0	0	1	0	1	1	0
2	1	0	0	1	0	0	1
3	0	1	1	0	0	1	0
4	1	0	0	1	0	0	0
5	0	1	0	0	0	0	1
6	0	0	0	1	1	0	1

Exact Cover Representation (Knuth, 2000)

- Loop through rows
- Row 2 covers D, G
- D removes row 4, 6
- G removes row 5, 6

	A	B	C	D	E	F	G
1	0	0	1	0	1	1	0
2	1	0	0	1	0	0	1
3	0	1	1	0	0	1	0
4	1	0	0	1	0	0	0
5	0	1	0	0	0	0	1
6	0	0	0	1	1	0	1

Recurse on 2×4 matrix

It has no solution, so will soon backtrack

Implementation in Sage

The games module only contains code for solving Sudoku puzzles, which I wrote in two hours on Alaska Airlines, in order to solve the puzzle in the inflight magazine. - William Stein, Sage Founder

- Sage, open source mathematics software, sagemath.org

Implementation in Sage

The games module only contains code for solving Sudoku puzzles, which I wrote in two hours on Alaska Airlines, in order to solve the puzzle in the inflight magazine. - William Stein, Sage Founder

- Sage, open source mathematics software, sagemath.org
- Stein (UW): naive recursive backtracking, run times of 30 minutes
- Carlo Hamalainen (Turkey/Oz): DLX for exact cover problems
- Tom Boothby (UW): Preliminary representation as an exact cover
- RAB: Optimized backtracking
- lots of look-ahead
- automatic Cython conversion of Python to C
- RAB: new class, conveniences for printing, finished DLX approach

Timings in Sage

Test Examples:

- Original doctest, provenance is Alaska Airlines in-flight magazine?
- 17-hint "random" puzzle (no 16-hint puzzle known)
- Worst-case: top-row empty, top-row solution 987654321
- All ~48,000 known 17-hint puzzles (Gordon Royle, UWA)

Equipment: R 3500 machine, 3 GHz Intel Core Duo

Puzzle	Time (milliseconds)		
	Naive	Custom	DLX
Alaska	34	0.187	1.11
17	$1,494,000$	441.0	1.20
Worst	$4,798,000$	944.0	1.21
48 K 17			$\sim 60,000$

Talk available at:

buzzard.pugetsound.edu/talks.html

