Textbooks as Sage Notebooks

Rob Beezer
beezer@ups.edu
Department of Mathematics and Computer Science University of Puget Sound

Joint Mathematics Meetings
San Francisco, California
January 15, 2010

Sage

- Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.
- Unifies over 100 open source packages for mathematics and scientific computation.
- R, Maxima, GAP/GP, Pari, Singular
- LAPACK, FLINT, SciPy, NumPy
- $\approx 300,000$ lines of new Python/Cython code
- User language is Python
- Use command-line or "Notebook" interface
- Notebook runs in any web browser
- Communicates with a server - local or remote
- Web Site: sagemath.org
- Public Notebook Server: sagenb.org

Sage Notebook

Sage Notebook in Firefox Browser on OS X

Sage Notebook

- Web 2.0 Application, AJAX
- Extensive use of Javascript

Sage Notebook

- Web 2.0 Application, AJAX
- Extensive use of Javascript
- Built-in: Cervone's jsMath

Sage Notebook

- Web 2.0 Application, AJAX
- Extensive use of Javascript
- Built-in: Cervone's jsMath
- Built-in: $\operatorname{LA} T_{E X}$ representation of every Sage object

Sage Notebook

- Web 2.0 Application, AJAX
- Extensive use of Javascript
- Built-in: Cervone's jsMath
- Built-in: $\operatorname{AT} T_{E X}$ representation of every Sage object
- Built-in: TinyMCE Javascript mini word-processor

Sage Notebook

- Web 2.0 Application, AJAX
- Extensive use of Javascript
- Built-in: Cervone's jsMath
- Built-in: $\operatorname{AT} T_{E X}$ representation of every Sage object
- Built-in: TinyMCE Javascript mini word-processor
- Built-in: Tools to publish and share worksheets

Sage "Interacts"

- Interactive demonstrations
- Like Java applets
- Like Mathematica's Manipulate
- Just a Python function
- Easily construct
- Sliders
- Checkboxes
- Selection boxes
- Input fields
- Process with Sage, Python
- Output: 2D, 3D graphics
- Output: HTML, ATEX
- Fast evolving feature of Sage

Gaussian Quadrature Interact (by Jason Grout)

$\sum_{i=1}^{i-10} w_{i}\left(\cos \left(10 x_{i}\right)+3 x_{i}\right)=-0.10884178228$
$\int_{-1}^{1} \cos (10 x)+3 x d x=-0.108804222178$

Trapezoid: -0.0732314498459, Simpson: -0.117474167511, Method: 3.75601017668e-05, Real: 2.51215104239e-13

Sage-Enhanced Textbooks

- Convert $\operatorname{LAT}_{E} X$ to jsMath with tex4ht
- Easily modify this to be a Sage worksheet
- Incorporate:
- Empty Sage input cells
- Live, editable, Sage example code
- One-click runnable interacts
- In their book, reader can:
- Execute Sage commands
- Experiment with Sage example code
- Experiment with interacts
- Copy and modify interacts
- Program in Python
- Annotate, including $A T_{E X}$

Prototype Sage-Enhaced Textbook

An open source development mantra:

Release EARLY, release often.

- Hand-crafted prototype
- Sampling of a section on linear transformations
- All begins with ${ }^{L} T_{E} \mathrm{EX}$ source
- Lots of cut/paste, can all be automated
- More notebook support coming

PDF output

So by Definition LT [519], P is a linear transformation.
So the multiplication of a vector by a matrix "transforms" the input vector into an output vector, possibly of a different size, by performing a linear combination. And this transformation happens in a "linear" fashion. This "functional" view of the matrix-vector product is the most important shift you can make right now in how you think about linear algebra. Here's the theorem, whose proof is very nearly an exact copy of the verification in the last example.

Theorem MBLT

Matrices Build Linear Transformations

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Then T is a linear transformation.

Proof

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =A(\mathbf{x}+\mathbf{y}) & & \text { Definition of } T \\
& =A \mathbf{x}+A \mathbf{y} & & \text { Theorem MMDAA [231] } \\
& =T(\mathbf{x})+T(\mathbf{y}) & & \text { Definition of } T
\end{aligned}
$$

and

$$
\begin{aligned}
T(\alpha \mathbf{x}) & =A(\alpha \mathbf{x}) & & \text { Definition of } T \\
& =\alpha(A \mathbf{x}) & & \text { Theorem MMSMM }[232] \\
& =\alpha T(\mathbf{x}) & & \text { Definition of } T
\end{aligned}
$$

So by Definition LT [519], T is a linear transformation.
So Theorem MBLT [526] gives us a rapid way to construct linear transformations. Grab an $m \times n$ matrix A, define $T(\mathbf{x})=A \mathbf{x}$ and Theorem MBLT [526] tells us that T is a linear transformation from \mathbb{C}^{n} to \mathbb{C}^{m}, without any further checking.

We can turn Theorem MBLT [526] around. You give me a linear transformation and I will give you a matrix.

jsMath output

Section LT Linear Transformations - Mozilla FirefoxFile Edit View History Bookmarks Tools Help

\checkmark
$8 \times$ Google

- Section LT Linear Transformations \&
So the multiplication of a vector by a matrix "transforms" the input vector into an output vector, possibly of a different size, by performing a linear combination. And this transformation happens in a "linear" fashion. This "functional" view of the matrix-vector product is the most important shift you can make right now in how you think about linear algebra. Here's the theorem, whose proof is very nearly an exact copy of the verification in the last example.

Theorem MBLT

Matrices Build Linear Transformations

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ by $T(x)=A x$. Then T is a linear transformation.

Proof

$$
\begin{array}{rlrl}
T(x+y) & =A(x+y) & & \\
& =A x+A y & & \text { Definition of } T \\
& \text { Theorem MMDAA } & \\
& =T(x)+T(y) & & \text { Definition of } T
\end{array} \quad \text { and }
$$

So by Definition LT, T is a linear transformation.
So Theorem MBLT gives us a rapid way to construct linear transformations. Grab an $m \times n$ matrix A, define $T(x)=A x$ and Theorem MBLT tells us that T is a linear transformation from \mathbb{C}^{n} to \mathbb{C}^{m}, without any further checking.

We can turn Theorem MBLT around. You give me a linear transformation and I will give you a matrix.

Example MFLT

Matrix from a linear transformation

Define the function $R: \mathbb{C}^{3} \rightarrow \mathbb{C}^{4}$ by

Sage Development

- Google Groups: sage-edu
- Use, test, comment to influence development
- Construct and share interacts: examples on Sage wiki
- Add new code to Sage for mathematics
- Develop new features for notebook using Javascript
- JOIN US!

Posted at http://buzzard.ups.edu/talks.html

Sage Enhanced Textbook Prototype

(3) Section RREF Reduced Row-Echelon Form - Mozilla Firefox

File Edit View History Bookmarks Tools Help
$\leftrightarrow \Rightarrow \vee$ C (
To write the set of solution vectors in set notation, we have

$$
S=\left\{\left.\left[\begin{array}{c}
3-x_{3} \\
2+x_{3} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3} \in \mathbb{C}\right\}
$$

We'll learn more in the next section about systems with infinitely many solutions and how to express their solution sets. Right now, you might look back at Example IS. \boxtimes

$$
\begin{aligned}
& \text { Generate new matrix } \\
& \text { Operation: } \\
& \text { Multiply A \& Add to B } \\
& \text { Row A: } 2 \hat{2} \text { Row B: } 3 \hat{2} \text { Multiple: } 4 \\
& \left(\begin{array}{rrrr}
1 & 2 & -1 & -3 \\
0 & -1 & 2 & 1 \\
0 & 4 & -8 & -4
\end{array}\right) \xrightarrow{4 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{rrrr}
1 & 2 & -1 & -3 \\
0 & -1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Theorem RREFU

Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then $B=C$.

Proof We need to begin with no assumptions about any relationships between B and C, other than they are both in reduced row-echelon form, and they are both row-equivalent to A.

