## Solving Sudoku with Dancing Links

Rob Beezer beezer@pugetsound.edu

Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington USA

> Stellenbosch University October 8, 2010

Available at http://buzzard.pugetsound.edu/talks.html



## **Example: Combinatorial Enumeration**

Create all permutations of the set  $\{0, 1, 2, 3\}$ 

- Simple example to demonstrate key ideas
- Creation, cardinality, existence?
- There are more efficient methods for this example

## Brute Force Backtracking

| BLACK = Forward |         |       | BLUE = | Solution | RED = Backtrack |       |      |
|-----------------|---------|-------|--------|----------|-----------------|-------|------|
| root            | 0 1 2   | 0133  | 0 2 1  | 0233     | 0 3 1           | 0 3   | 102  |
| 0               | 0122    | 0 1 3 | 0213   | 0 2 3    | 0313            | 0 3 3 | 1021 |
| 0 0             | 0 1 2   | 0 1   | 0 2 1  | 0 2      | 0 3 1           | 0 3   | 102  |
| 0               | 0123    | 0     | 0 2    | 0        | 0 3             | 0     | 1022 |
| 0 1             | 0 1 2   | 0 2   | 0 2 2  | 0 3      | 0 3 2           | root  | 102  |
| 0 1 0           | 0 1     | 020   | 0 2    | 030      | 0320            | 1     | 1023 |
| 0 1             | 013     | 0 2   | 023    | 0 3      | 0 3 2           | 1 0   | 102  |
| 0 1 1           | 0130    | 021   | 0230   | 0 3 1    | 0 3 2 1         | 100   | :    |
| 0 1             | 0 1 3   | 0210  | 0 2 3  | 0310     | 0 3 2           | 1 0   | :    |
| 0 1 2           | 0131    | 0 2 1 | 0231   | 0 3 1    | 0322            | 101   | ·    |
| 0 1 2 0         | 0 1 3   | 0211  | 0 2 3  | 0311     | 0 3 2           | 1 0   |      |
| 0 1 2           | 0 1 3 2 | 0 2 1 | 0232   | 0 3 1    | 0323            | 102   | :    |
| 0 1 2 1         | 0 1 3   | 0212  | 0 2 3  | 0 3 1 2  | 0 3 2           | 1020  | :    |

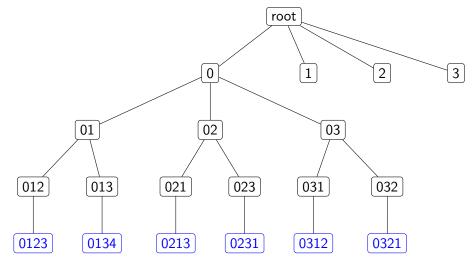
#### A Better Idea

- Avoid the really silly situations, such as: 1 0 1
- "Remember" that a symbol has been used already
- Additional data structure: track "available" symbols
- Critical: must maintain this extra data properly
- (Note recursive nature of backtracking)

# Sophisticated Backtracking

| BLACK = For              | rward           | BLUE = Solutio | n RED                  | RED = Backtrack         |  |  |
|--------------------------|-----------------|----------------|------------------------|-------------------------|--|--|
| root {0,1,2,3} 0 {1,2,3} | 0213 {} 021 {3} | 0321 {}        | 1 0 {2,3}<br>1 {0,2,3} | 1 3 0 2 {}<br>1 3 0 {2} |  |  |
| 0 1 {2,3}                | 0 2 {1,3}       | 0 3 {1,2}      | 1 2 {0,3}              | 1 3 {0,2}               |  |  |
| 0 1 2 {3}                | 0 2 3 {1}       | 0 {1,2,3}      | 1 2 0 {3}              | 1 3 2 {0}               |  |  |
| 0 1 2 3 {}               | 0231 {}         | root {0,1,2,3} | 1203 {}                | 1 3 2 0 {}              |  |  |
| 0 1 2 {3}                | 0 2 3 {1}       | 1 {0,2,3}      | 1 2 0 {3}              | 1 3 2 {0}               |  |  |
| 0 1 {2,3}                | 0 2 {1,3}       | 1 0 {2,3}      | 1 2 {0,3}              | 1 3 {0,2}               |  |  |
| 0 1 3 {2}                | 0 {1,2,3}       | 1 0 2 {3}      | 1 2 3 {0}              | 1 {0,2,3}               |  |  |
| 0 1 3 2 {}               | 0 3 {1,2}       | 1023 {}        | 1 2 3 0 {}             | root {0,1,2,3}          |  |  |
| 0 1 3 {2}                | 0 3 1 {2}       | 1 0 2 {3}      | 1 2 3 {0}              | 2 {0,1,3}               |  |  |
| 0 1 {2,3}                | 0 3 1 2 {}      | 1 0 {2,3}      | 1 2 {0,3}              | :                       |  |  |
| 0 {1,2,3}                | 0 3 1 {2}       | 1 0 3 {2}      | 1 {0,2,3}              |                         |  |  |
| 0 2 {1,3}                | 0 3 {1,2}       | 1032 {}        | 1 3 {0,2}              |                         |  |  |
| 0 2 1 {3}                | 0 3 2 {1}       | 1 0 3 {2}      | 1 3 0 {2}              | :                       |  |  |

## Depth-First Search Tree



## Algorithm

```
n=4
available = [True]*n # [True, True, True, True]
               # [0, 0, 0, 0]
perm = [0] * n
def bt(level):
    for \times in range(n):
        if available[x]:
             available[x] = False
             perm[level]=x
             if level+1 == n:
                 print perm
             bt(level+1)
             available[x]=True
```

bt(0)

#### Sudoku Basics

- $n^2$  symbols
- $n^2 \times n^2$  grid
- $n^2$  subgrids ("boxes") each  $n \times n$
- Classic Sudoku is n = 3
- Each symbol once and only once in each row
- Each symbol once and only once in each column
- Each symbol once and only once in each box
- The grid begins partially completed
- A Sudoku puzzle should have a unique completion

# Example

| 5 |   |   |        | 8 |     |   | 4 | 9 |   |
|---|---|---|--------|---|-----|---|---|---|---|
|   |   |   | 5<br>3 |   |     |   | 3 |   |   |
|   | 6 | 7 | 3      |   |     |   |   | 1 |   |
| 1 | 5 |   |        |   |     |   |   |   |   |
|   |   |   | 2      |   | 8   |   |   |   | = |
|   |   |   |        |   |     |   | 1 | 8 |   |
| 7 |   |   |        |   | 4 2 | 1 | 5 |   |   |
|   | 3 |   |        |   | 2   |   |   |   |   |
| 4 | 9 |   |        | 5 |     |   |   | 3 |   |

|               | 5 | 1 | 3 | 6 | 8 | 7 | 2 | 4 | 9 |
|---------------|---|---|---|---|---|---|---|---|---|
|               | 8 | 4 | 9 | 5 | 2 | 1 | 6 | 3 | 7 |
|               | 2 | 6 | 7 | 3 | 4 | 9 | 5 | 8 | 1 |
|               | 1 | 5 | 8 | 4 | 6 | 3 | 9 | 7 | 2 |
| $\Rightarrow$ | 9 | 7 | 4 | 2 | 1 | 8 | 3 | 6 | 5 |
|               | 3 | 2 | 6 | 7 | 9 | 5 | 4 | 1 | 8 |
|               | 7 | 8 | 2 | 9 | 3 | 4 | 1 | 5 | 6 |
|               | 6 | 3 | 5 | 1 | 7 | 2 | 8 | 9 | 4 |
|               | 4 | 9 | 1 | 8 | 5 | 6 | 7 | 2 | 3 |

## Sudoku via Backtracking

- Fill in first row, left to right, then second row, . . .
- For each blank cell, maintain possible new entries
- As entries are attempted, update possibilities
- If a cell has just one possibility, it is forced
- Lots to keep track of, especially at backtrack step

## Sudoku via Backtracking

- Fill in first row, left to right, then second row, ...
- For each blank cell, maintain possible new entries
- As entries are attempted, update possibilities
- If a cell has just one possibility, it is forced
- Lots to keep track of, especially at backtrack step
- Alternate Title: "Why I Don't Do Sudoku"

Top row, second column: possibilities?

| 5 |   |   |   | 8 |        |   | 4 | 9 |
|---|---|---|---|---|--------|---|---|---|
|   |   |   | 5 |   |        |   | 3 |   |
|   | 6 | 7 | 3 |   |        |   |   | 1 |
| 1 | 5 |   |   |   |        |   |   |   |
|   |   |   | 2 |   | 8      |   |   |   |
|   |   |   |   |   |        |   | 1 | 8 |
| 7 |   |   |   |   | 4      | 1 | 5 |   |
|   | 3 |   |   |   | 4<br>2 |   |   |   |
| 4 | 9 |   |   | 5 |        |   |   | 3 |
| 4 |   |   |   | 5 |        |   |   | 3 |

$$\{1,2,4,7,8\} \longrightarrow \{1,2,4,7,8\} \cap \{1,2,3,6,7\} = \{1,2,7\}$$

Suppose we try 2 first.

Seventh row, second column: possibilities?

| 5 | 2 |   |   | 8 |        |   | 4 | 9 |
|---|---|---|---|---|--------|---|---|---|
|   |   |   | 5 |   |        |   | 3 |   |
|   | 6 | 7 | 3 |   |        |   |   | 1 |
| 1 | 5 |   |   |   |        |   |   |   |
|   |   |   | 2 |   | 8      |   |   |   |
|   |   |   |   |   |        |   | 1 | 8 |
| 7 |   |   |   |   | 4      | 1 | 5 |   |
|   | 3 |   |   |   | 4<br>2 |   |   |   |
| 4 | 9 |   |   | 5 |        |   |   | 3 |
| 4 |   |   |   | 5 |        |   |   | 3 |

$$\{1,4,7,8\}$$
  $\longrightarrow$   $\{1,4,7,8\} \cap \{2,3,6,8,9\} = \{8\}$ 

One choice!

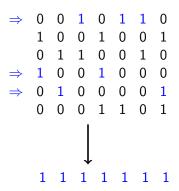
This may lead to other singletons in the affected row or column.

#### **Exact Cover Problem**

- Given: matrix of 0's and 1's
- Find: subset of rows
- Condition: rows sum to exactly the all-1's vector
- Amenable to backtracking (on columns, not rows!)
- Example: (Knuth)

## Solution

Select rows 1, 4 and 5:



#### Sudoku as an Exact Cover Problem

- Matrix rows are per symbol, per grid location  $(n^2 \times (n^2 \times n^2) = n^6)$
- Matrix columns are conditions:  $(3n^4 \text{ total})$ 
  - ▶ Per symbol, per grid row: symbol in row  $(n^2 \times n^2)$
  - ▶ Per symbol, per grid column: symbol in column  $(n^2 \times n^2)$
  - Per symbol, per grid box: symbol in box  $(n^2 \times n^2)$

# Place a 1 in entry of the matrix if and only if

matrix row describes symbol placement satisfying matrix column condition

• Example:

Consider matrix row that places a 7 in grid at row 4, column 9

- ▶ 1 in matrix column for "7 in grid row 4"
- ▶ 1 in matrix column for "7 in grid column 9"
- ▶ 1 in matrix column for "7 in grid box 6"
- 0 elsewhere



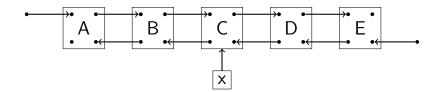
#### Sudoku as an Exact Cover Problem

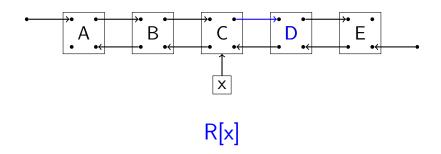
- Puzzle is "pre-selected" matrix rows
- Can delete these matrix rows, and their "covered matrix columns"
- n = 3: 729 matrix rows, 243 matrix columns
- Previous example: Remove 26 rows, remove  $3 \times 26 = 78$  columns
- Select 81 26 = 55 rows, from 703, for exact cover (uniquely)
- Selected rows describe placement of symbols into locations for Sudoku solution

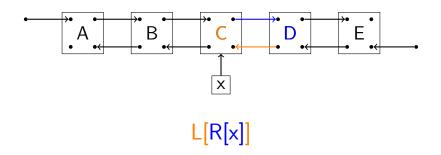
## **Dancing Links**

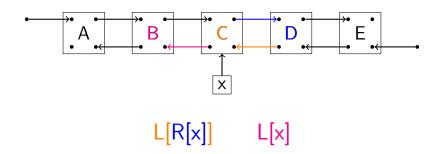
- Manage lists with frequent deletions and restorations
- Perfect for descending, backtracking in a search tree
- Hitotumatu, Noshita (1978, Information Processing Letters)
  - "pointers of each already-used element are still active while... removed"
  - Two pages, N queens problem
  - Donald Knuth listed in the Acknowledgement
- Popularized by Knuth, "Dancing Links" (2000, arXiv)
  - ▶ Algorithm X = "traditional" backtracking
  - ▶ Algorithm DLX = Dancing Links + Algorithm X
  - ▶ 26 pages, applications to packing pentominoes in a square

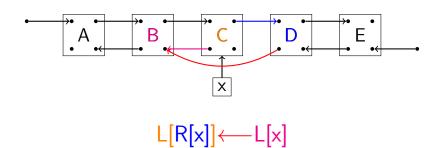
## Doubly-Linked List



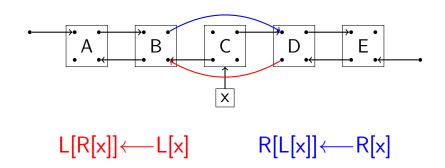




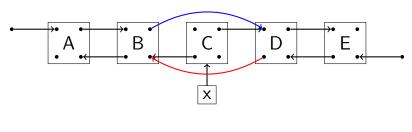




## Two Assignments to Totally Remove "C"



## Two Assignments to Totally Remove "C"

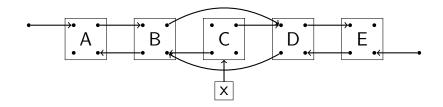


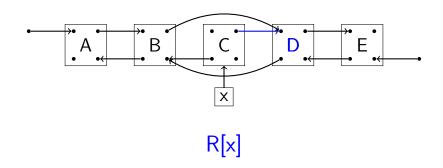
$$L[R[x]] \leftarrow L[x]$$

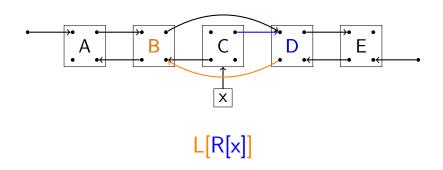
$$R[L[x]] \leftarrow R[x]$$

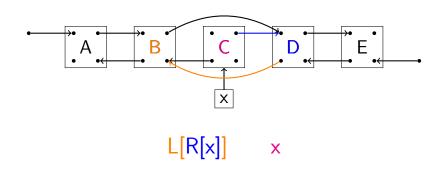
DO NOT CLEAN UP THE MESS

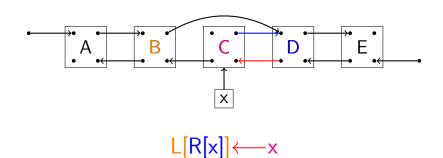
## List Without "C", Includes Our Mess

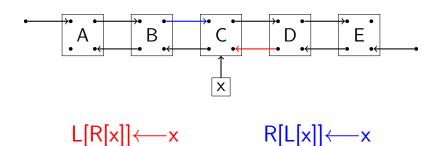


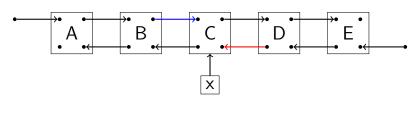












$$L[R[x]] \leftarrow x$$

$$R[L[x]] \leftarrow x$$

WE NEED OUR MESS, IT CLEANS UP ITSELF

#### DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows

#### DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows
- Loop over rows, for each row choice remove covered columns

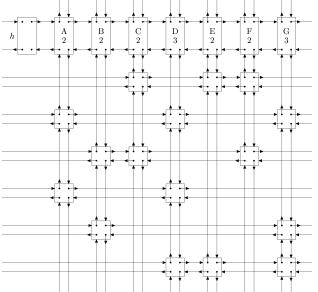
#### DLX for the Exact Cover Problem

- Backtrack on the columns
- Choose a column to cover, this will dictate a selection of rows
- Loop over rows, for each row choice remove covered columns
- Recursively analyze new, smaller matrix
- Restore rows and columns on backtrack step

# Exact Cover Example (Knuth, 2000)

|   | Α | В | C | D                          | Ε | F | G |
|---|---|---|---|----------------------------|---|---|---|
| 1 | 0 | 0 | 1 | 0                          | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 1                          | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0                          | 0 | 1 | 0 |
| 4 | 1 | 0 | 0 | 1                          | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0                          | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0<br>1<br>0<br>1<br>0<br>1 | 1 | 0 | 1 |

# Exact Cover Representation (Knuth, 2000)

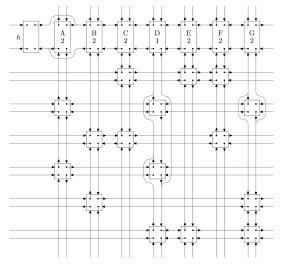


Stellenbosch U October 2010

# Exact Cover Representation (Knuth, 2000)

- Cover column A
- Remove rows 2, 4

|   | Α | В | C | D | Ε | F | G |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |

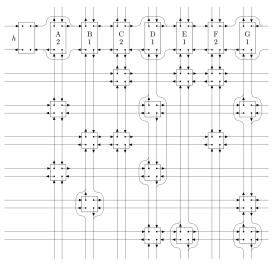


# Exact Cover Representation (Knuth, 2000)

- Loop through rows
- Row 2 covers D, G
- D removes row 4, 6
- G removes row 5, 6

|   | Α | В | C | D | Ε | F | G |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
|   |   |   |   |   |   |   |   |

Recurse on 2 × 4 matrix It has no solution, so will soon backtrack



## Implementation in Sage

The games module only contains code for solving Sudoku puzzles, which I wrote in two hours on Alaska Airlines, in order to solve the puzzle in the inflight magazine.

— William Stein, Sage Founder

Sage, open source mathematics software, sagemath.org

## Implementation in Sage

The games module only contains code for solving Sudoku puzzles, which I wrote in two hours on Alaska Airlines, in order to solve the puzzle in the inflight magazine.

— William Stein, Sage Founder

- Sage, open source mathematics software, sagemath.org
- Stein (UW): naive recursive backtracking, run times of 30 minutes
- Carlo Hamalainen (Turkey/Oz): DLX for exact cover problems
- Tom Boothby (UW): Preliminary representation as an exact cover
- RAB: Optimized backtracking
  - ▶ lots of look-ahead
  - automatic Cython conversion of Python to C
- RAB: new class, conveniences for printing, finished DLX approach

## Timings in Sage

#### Test Examples:

- Original doctest, provenance is Alaska Airlines in-flight magazine?
- 17-hint "random" puzzle (no 16-hint puzzle known)
- Worst-case: top-row empty, top-row solution 987654321
- All ~48,000 known 17-hint puzzles (Gordon Royle, UWA)

Equipment: R 3500 machine, 3 GHz Intel Core Duo

| Puzzle | Time (milliseconds) |       |         |  |  |  |
|--------|---------------------|-------|---------|--|--|--|
|        | Naive               | DLX   |         |  |  |  |
| Alaska | 34                  | 0.187 | 1.11    |  |  |  |
| 17     | 1,494,000           | 441.0 | 1.20    |  |  |  |
| Worst  | 4,798,000           | 944.0 | 1.21    |  |  |  |
| 48K 17 |                     |       | ~60,000 |  |  |  |

Talk available at:

buzzard.pugetsound.edu/talks.html