A Modern Online Linear Algebra Textbook

Rob Beezer
 beezer@pugetsound.edu

Department of Mathematics and Computer Science
University of Puget Sound

18th Conference of the

International Linear Algebra Society
Providence, Rhode Island
June 7, 2013

Introduction and Outline

Two parts:

- Thoughts on organizing an introductory course
- Modern approach to textbook design and distribution
- Follow along in the third half:
http://linear.ups.edu, left sidebar: "Online"
- Support: NSF TUES Grant, UTMOST project, utmost. aimath.org
- Support: Shuttleworth Foundation Flash Grant

SHUTTLEWORTH FUNDED

A First Course in Linear Algebra

- Initiated 2003; Version 1.02006
- Always free online
- GNU Free Documentation License
- Sophomore course
- Emphasis on proof techniques

Chapter: System of Equations

- Best motivation for students coming out of calculus
- Hint: reduced row-echelon form is a column-by-column algorithm
- Natural place to introduce null spaces and nonsingular matrices
- Cycle back and rephrase in the language of the linear transformation

$$
T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} \quad T(\mathbf{x})=A \mathbf{x}
$$

Chapter: Vectors

- A vector space has addition and scalar multiplication
- So a linear combination is the most natural construction
- Spanning sets and linear independence follow

Chapter: Vectors

- Other consequences:
- Product of a matrix A and a vector \mathbf{x} is the linear combination of the columns of A with scalars from the entries of \mathbf{x}
- Matrix multiplication:

$$
A B=A\left[B_{1}\left|B_{2}\right| \ldots \mid B_{p}\right]=\left[A B_{1}\left|A B_{2}\right| \ldots \mid A B_{p}\right]
$$

- The entry-by-entry formula for a matrix product,

$$
\sum_{j} a_{i j} b_{j k}
$$

is now a theorem, derived from linear combinations

Chapter: Matrices

- Matrix operations, multiplication, inverses
- Various subspaces just as sets

Treat as vector spaces later (spans, column space, row space, null space, left null space)

- When to consider orthogonality?
- Vectors: orthogonal pairs, orthogonal sets, Gram-Schmidt
- Matrices: adjoint, Hermitian (self-adjoint), unitary

Chapter: Matrices

- Extended Echelon Form of $m \times n$ matrix A (perhaps rectangular)

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\text { RREF }} N=[B \mid J]=\left[\begin{array}{ll}
C & K \\
0 & L
\end{array}\right]
$$

- Matrix on right (J) records row-operations, canonically
- L has rows which record "zero-ing" of rows of A

Chapter: Matrices

- Extended Echelon Form of $m \times n$ matrix A (perhaps rectangular)

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\text { RREF }} N=[B \mid J]=\left[\begin{array}{ll}
C & K \\
0 & L
\end{array}\right]
$$

- Matrix on right (J) records row-operations, canonically
- L has rows which record "zero-ing" of rows of A
- Then
- The null space of A is the null space of C; dimension $n-r$

Chapter: Matrices

- Extended Echelon Form of $m \times n$ matrix A (perhaps rectangular)

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\mathrm{RREF}} N=[B \mid J]=\left[\begin{array}{ll}
C & K \\
0 & L
\end{array}\right]
$$

- Matrix on right (J) records row-operations, canonically
- L has rows which record "zero-ing" of rows of A
- Then
- The null space of A is the null space of C; dimension $n-r$
- The row space of A is the row space of C; dimension r

Chapter: Matrices

- Extended Echelon Form of $m \times n$ matrix A (perhaps rectangular)

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\mathrm{RREF}} N=[B \mid J]=\left[\begin{array}{ll}
C & K \\
0 & L
\end{array}\right]
$$

- Matrix on right (J) records row-operations, canonically
- L has rows which record "zero-ing" of rows of A
- Then
- The null space of A is the null space of C; dimension $n-r$
- The row space of A is the row space of C; dimension r
- The column space of A is the null space of L; dimension r

Chapter: Matrices

- Extended Echelon Form of $m \times n$ matrix A (perhaps rectangular)

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\mathrm{RREF}} N=[B \mid J]=\left[\begin{array}{ll}
C & K \\
0 & L
\end{array}\right]
$$

- Matrix on right (J) records row-operations, canonically
- L has rows which record "zero-ing" of rows of A
- Then
- The null space of A is the null space of C; dimension $n-r$
- The row space of A is the row space of C; dimension r
- The column space of A is the null space of L; dimension r
- The left null space of A is the row space of L; dimension $m-r$

Chapters: Determinants, Eigenvalues

- Eigenvalues are necessarily complex numbers, even if we use \mathbb{R}^{n}
- $A \mathbf{x}=\lambda \mathbf{x}$ then introduces vectors with complex entries
- So consistently work over \mathbb{C}^{n} rather than \mathbb{R}^{n}
- No penalty to do so
- Do not need to use complex numbers for examples
- Better inner product (using complex conjugation)
- Some theorems easier (algebraically closed field)

Chapter: Vector Spaces

- Have many examples of subspaces in \mathbb{C}^{n}
- Can now formulate more axiomatic treatment
- Key theorem for properties of dimension

If a set of t vectors spans the vector space V, then any set of $t+1$ or more vectors is linearly dependent.

Chapter: Linear Transformations

- Heavy use of pre-images (a set)
- Parallels early theorems about solutions to systems of equations
- Inverse of a linear transformation
- Surjective: pre-images are all non-empty
- Injective: pre-images have at most one element
- Bijective: each pre-image is a singleton, so use this to establish existence of the inverse linear transformation constructively
- Then exercises construct inverse linear transformations from pre-images of a basis of the codomain

Chapter: Representations

Vector representation is an invertible linear transformation

- Vector space V of dimension n with basis $B=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}$
- $\rho_{B}: V \rightarrow \mathbb{C}^{n}$
- $\rho_{B}(\mathbf{v})=\rho_{B}\left(\sum_{i=1}^{n} a_{i} \mathbf{w}_{i}\right)=\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ a_{n}\end{array}\right]$
- Having ρ^{-1} is convenient (just a linear combination)

Chapter: Representations

- Fundamental Theorem of Matrix Representation
- Matrix representation: $M_{B, C}^{T}$
(B, C bases of domain and codomain, respectively)
- Then: $\rho_{C}(T(\mathbf{u}))=M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)$
- Or: $T(\mathbf{u})=\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right)$

A First Course in Linear Algebra, Online

- Used at 25 or more universities
(Berkeley, Carnegie Mellon, Notre Dame, Amherst, Smith)
- Over 1.1 million page views at linear.pugetsound.edu
- \#5 result in Google search for "linear algebra"
- Worldwide audience
- Version 0.10, July 2004, PDFs

A First Course in Linear Algebra, Online

- Used at 25 or more universities
(Berkeley, Carnegie Mellon, Notre Dame, Amherst, Smith)
- Over 1.1 million page views at linear.pugetsound.edu
- \#5 result in Google search for "linear algebra"
- Worldwide audience
- Version 0.10, July 2004, PDFs
- Version 1.00, December 2006, TeX4ht conversion to HTML

A First Course in Linear Algebra, Online

- Used at 25 or more universities
(Berkeley, Carnegie Mellon, Notre Dame, Amherst, Smith)
- Over 1.1 million page views at linear.pugetsound.edu
- \#5 result in Google search for "linear algebra"
- Worldwide audience
- Version 0.10, July 2004, PDFs
- Version 1.00, December 2006, TeX4ht conversion to HTML

Worldwide Audience

Most recent visitors to book content, last weekend (09:51:55 29 May to 10:03:33 1 Jun, 2013)

A First Course in Linear Algebra, Online

Version 3.00, December 2012

- Source converted to XML
- Web version optimized for online viewing
- Standard XHTML, CSS, JavaScript ("platform-independent")
- Heavy cross-referencing
- Increased navigational aids
- Knowls: theorems, proofs, examples, exercises
- Sage cells: embedded, editable, computational examples

Demonstration

TEXTBOOK DEMO

linear.ups.edu, left sidebar: "Online"

XML Source

Section NM, Nonsingular Matrices Theorem NMRRI, Nonsingular Matrices Row-reduce to the Identity Matrix

Teaching with an Online Text

- Nothing beats teaching with your text

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class
- More time to discuss computational tools

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class
- More time to discuss computational tools
- Many solutions included

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class
- More time to discuss computational tools
- Many solutions included
- Students use laptops during exams Only a simple web page with Sage cell server instances

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class
- More time to discuss computational tools
- Many solutions included
- Students use laptops during exams Only a simple web page with Sage cell server instances
- Students are involved in correcting the text

Teaching with an Online Text

- Nothing beats teaching with your text
- Large examples can be discussed in class
- More time to discuss computational tools
- Many solutions included
- Students use laptops during exams

Only a simple web page with Sage cell server instances

- Students are involved in correcting the text
- But: our students expect a second look

Textbooks

- Textbook as "knowledge transfer"

Textbooks

- Textbook as "knowledge transfer"
- Much of this is happening online now, especially for 20 -somethings

Textbooks

- Textbook as "knowledge transfer"
- Much of this is happening online now, especially for 20 -somethings
- Any good textbook is available as a free download

Textbooks

- Textbook as "knowledge transfer"
- Much of this is happening online now, especially for 20 -somethings
- Any good textbook is available as a free download
- Knowls greatly improve structure of an online textbook

Textbooks

- Textbook as "knowledge transfer"
- Much of this is happening online now, especially for 20 -somethings
- Any good textbook is available as a free download
- Knowls greatly improve structure of an online textbook
- Sage, plus Sage cell server, allow integrating computation

What's Next

- More "products" from the source (e.g. solutions manual)

What's Next

- More "products" from the source (e.g. solutions manual)
- A Second Course in Linear Algebra
- Available now: http://linear.ups.edu/version3/scla/scla.html
- Cross-volume linking and knowls from FCLA
- Numerical work with Sage (not just exact linear algebra)
- Completed: AY 2013-14

What's Next

- More "products" from the source (e.g. solutions manual)
- A Second Course in Linear Algebra
- Available now: http://linear.ups.edu/version3/scla/scla.html
- Cross-volume linking and knowls from FCLA
- Numerical work with Sage (not just exact linear algebra)
- Completed: AY 2013-14
- A usable system to author textbooks in XML (this summer)

FCLA: http://linear.pugetsound.edu

Web: http://buzzard.pugetsound.edu/talks.html

Blog: http://beezers.org/blog/bb

