Teaching Introductory Linear Algebra with Open Software and Textbooks

MAA Session: Innovative and Effective Ways to Teach Linear Algebra 2018 Joint Mathematics Meeting, San Diego

Rob Beezer
January 11, 2018
Department of Mathematics and Computer Science
University of Puget Sound
beezer@pugetsound.edu

Linear Algebra and Computation

An Introductory Example

$$
\left[\begin{array}{cccccc}
-1 & 1 & 5 & -1 & -5 & 0 \\
-2 & 1 & 7 & -2 & -9 & -2 \\
1 & 2 & 4 & 2 & 4 & 6 \\
1 & 1 & 1 & 1 & 3 & 3 \\
0 & -1 & -3 & 1 & 3 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
1 & 0 & -2 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Analysis of RREF

$$
\left[\begin{array}{cccccc}
-1 & 1 & 5 & -1 & -5 & 0 \\
-2 & 1 & 7 & -2 & -9 & -2 \\
1 & 2 & 4 & 2 & 4 & 6 \\
1 & 1 & 1 & 1 & 3 & 3 \\
0 & -1 & -3 & 1 & 3 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
1 & 0 & -2 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Rank 4 , blue entries are 4×4 identity matrix
- Range (column space) is spanned by columns $1,2,4$, and 6
- Kernel (null space) is spanned by 2 vectors with red entries
- As a coefficient matrix, solutions are pre-images Solution iff last column row-reduces with zero entry row 5
- A left null space vector produces zero row via linear combo

RREF in C^{3}

Suppose A is a 3×3 matrix (with no zero columns), then its reduced row-echelon form looks like:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \times \\
0 & 1 & \times \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & \times & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & \times & \times \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The geometric intuition of 3 dimensions is useful, but there is not much algebraic variety or generality here.

Conclusions

Session Description:
"(5) comparing and contrasting visual (geometric) and more abstract (algebraic) explanations of specific ideas"

- Analysis of "large" matrices are crucial for an algebraic approach
- We do not want students computing the RREF of a 5×6 matrix by hand, so computational tools are an important part of an introductory course
- Computations should be exact, so for an introductory course, the field of rational numbers is perfect (not the reals, not the complexes)
- Sage (open source Mathematica, Maple, Matlab, Magma) fits the bill with very thorough support over the rationals

Open Software and Textbooks

Extreme Example: Eigenvalues of a Matrix from Sage

sage: matrix(QQ, [[10, -12, -11, -13],

$$
\begin{aligned}
& \text { [12, -13, -9, -12], } \\
& {[-6, ~ 9, ~ 13, ~ 14],} \\
& [2,-5,-11,-11]])
\end{aligned}
$$

sage: A.fcp()
$(x+1) *\left(x^{\wedge} 3-2\right)$
sage: A.eigenvalues()
[-1, 1.259921049894873?,
-0.6299605249474365 ? - 1.091123635971722?*I,
$-0.6299605249474365 ?+1.091123635971722$?*I]
sage: N(A.eigenvalues()[1]^3, digits=45)
2.00

Sage Cells in Open Source Textbook

In-Class Demonstrations

Examinations

- Students use the full range of powerful Sage commands to study the subject, for example A. column_space().
- For examinations solutions are typically limited to:
- Vector and matrix operations (products, transpose, etc.)
- Reduced row-echelon form
- Determinant
- Factored characteristic polynomial
- Eigen-stuff
- During exams: students' laptops, plus provided web page with matrix inputs and Sage cells

PS: Sage is useful for constructing examinations, especially "random" matrices with "nice" properties (integer RREF, integer eigenvalues, determinant 1, etc.)

Sample Examination Calculator

* (1) 290-X5-KoFFae.html

Linear Algebra, Math 290, Exam 5, Chapters D and E

Resources

Freely available, with open licenses:

