Mathematics Textbooks with Open Licenses

Stellenbosch University

Rob Beezer
February 16, 2018
African Institute for Mathematical Sciences

Department of Mathematics and Computer Science
University of Puget Sound
beezer@pugetsound.edu

Publishing with an Open License

Legal

- Copyright is a government-granted monopoly
- Patents, Designs, Trade Marks and Copyright Act, 1916
- Copyright Act, 1978; British law, Berne Convention
- An open license provides additional freedoms
- Unlimited copying
- In perpetuity
- Modifications for personal use
- Possibly: the right to distribute modifications
- "Copyleft"

> "freely available" $\quad \neq$
distribute with an explicit open license

An Open Textbook, Online

Abstract Algebra: Theory and Applications, by Tom Judson

- \#2 in Google "abstract algebra"
- Openly licensed
- Hardcopy: R 300 (USD 25)
- PDF download: Free! (Legally!)
- Online: Includes Sage Cell examples

Web Versions of Open Textbooks

- Portable: 64 GB is
- 64 Encyclopedia Britannica (text)
- 1 English Wikipedia (text)
- 10,000 400-page math textbooks (w/ images)
- Ubiquitous: laptop, tablet, or phone
- Up-to-Date: correct, and refresh, at will
- Accurate: crowd-sourced proof-reading
- Open: never out-of-print
- Intellectually Honest:
no pressure to satisfy market segments
- FREE!!!!!

Proprietary Electronic Textbooks

- Expire after course
- Limited printing
- Inconvenient interfaces
- Difficult to resell
- Page-oriented (ala PDF)

Interactive Web Versions

- Extensive cross-referencing, index
- Information hiding ("knowls")
- Acessibility features
- MathJax for math, Google for fonts
- Integrated Google Search
- Embedded YouTube Videos
- Interactive demonstrations: Sage, Python, GeoGebra, CalcPlot3D, Desmos, JSXGraph
- Live, instant-response, homework: WeBWorK, MyOpenMath, two others in development
- Offline? PDF, EPUB, or talk to me

Abstract Algebra Demonstration

ABSTRACT ALGEBRA DEMONSTRATION

The Movement

SPARC Report, Connect OER 2016-17

KEY INSIGHT \#3: MATHEMATICS AND STATISTICS IS THE ACADEMIC SUBJECT WITH THE MOST OER TRACTION

Institutions were asked to note which academic subjects had the greatest OER traction. Amongst the 65 institutions that answered this question, mathematics and statistics ranked the highest with nearly half (30) indicating it had traction, followed by social and behavioural sciences (22), biological and related sciences (21), and chemistry (20). Figure 6 depicts the top 10 academic subjects with the most OER traction.

Figure 6. Top 10 academic subjects with the most OER traction.

American Institute of Mathematics (AIM)

Approved Textbooks • Evaluation Criteria - Guide for Authors • Editorial Board

Approved Textbooks

The list below groups open textbooks by course title. All the books have been judged to meet the evaluation criteria set by the AIM editorial board.

\checkmark Liberal Arts Math	\checkmark Discrete Math	\checkmark Real Analysis
College Algebra and Precalculus	\checkmark Combinatorics	\checkmark Complex Analysis
	\checkmark Mathematical Computing	\checkmark Geometry and Topology
\checkmark Calculus		
	\checkmark Numerical Analysis	\checkmark Probability
\checkmark Differential Equations		
	\checkmark Abstract Algebra	\checkmark Statistics
\checkmark Linear Algebra		
to	\checkmark Number Theory	\checkmark Logic

AIM Open Textbook Initiative

Approved Textbooks

The list below groups open textbooks by course title. All the books have been judged to meet the evaluation criteria set by the AIM editorial board.
\checkmark Liberal Arts Math
$`$ College Algebra and Precalculus
\checkmark Calculus
\checkmark Differential Equations
\checkmark Linear Algebra
\checkmark Introduction to Proofs
\checkmark Discrete Math
${ }^{\wedge}$ Combinatorics

Applied Combinatorics Mitchel T. Keller and William T. Trotter

Combinatories Through Guided
Discover)
Kenneth Bogart
Foundations of Combinatorics with
Applications
Edward A. Bender and S. Gill Williamson
\checkmark Mathematical Computing
\checkmark Numerical Analysis
${ }^{\sim}$ Abstract Algebra
\vee Number Theory

Bogart's Combinatorics Through Guided Discovery

Approved Textbooks • Evaluation Criteria - Guide for Authors • Editorial Board

Combinatorics Through Guided Discovery

Kenneth P. Bogart

Digital versions	PDF and HTML
PreTeXt source	Yes
Exercises	Yes
Solutions	Solution manual available to instructors
License	GNU Free Documentation License

- Text for a first course in combinatorics
- Copyright 2004 by author
- 200 pages, 6 chapters, 3 supplemental sections
- Over 400 exercises, many with hints
- Paperback version available for about $\$ 9$
- For more information and to access PDF or online version

As the title suggests this book is designed for a "discovery method" course. The heart of the book is the hundreds of exercises that guide the student through the key ideas of enumerative combainatorics and a brief introduction to graph theory. The exercises are marked with special symbols to indicate their role in the course, for example, whether they are essential or motivational. The chapter titles are

1. What is Combinatorics?
2. Applications of Induction and Recursion in Combinatorics and Graphy Theory
3. Distribution Problems
4. Generating Functions
5. The Principle of Inclusion and Exclusion
6. Groups Acting on Sets

The three suppimental sections deal with relations, mathematical induction, and exponential generating functions.
This book is the result of an NSF project led by Ken Bogart and is currently maintained by the Mathematics Department of Dartmouth College.

PreTeXt

PreTeXt Authoring Language

- Philosophy: rigorously separate
- structure and content
- presentation

PreTeXt Authoring Language

- Philosophy: rigorously separate
- structure and content
- presentation
- Realization:
- structure: an XML vocabulary
- not Markdown, ASCIIDoc, JSON

YAML, MediaWiki, Pandoc, ...

- math content: still $\operatorname{AT}_{\mathrm{E}} \mathrm{X}$ (AMS Math)

PreTeXt Authoring Language

- Philosophy: rigorously separate
- structure and content
- presentation
- Realization:
- structure: an XML vocabulary
- not Markdown, ASCIIDoc, JSON YAML, MediaWiki, Pandoc, ...
- math content: still LATEX (AMS Math)
- Payoff:
- multiple outputs from a single source
- powerful and flexible processing with eXtensible Stylesheet Language (XSL)
- author with your favorite text editor
- cross-platform open-source toolchain

New Author-Friendly XML Vocabulary

- Sensible element names
- book, chapter, section, subsection
- theorem: title, statement, proof
- Sensible abbreviations
- p, ul, ol, dl, li, q, em
- m, me, md/mrow
- Consistent element use
- title
- introduction
- xref, xml:id
- Only three dangerous characters: \&, <, >
- Simple rules for special (escaped) characters

UGLY XML

- Schema for element relationships, validation

PreTeXt Example

<theorem xml:id="power-rule">
<title>Power Rule</title>
<idx>power rule</idx>
<statement>
<p>The derivative of <m>f(x)=x^n</m>
is <m>f' \((x)=n x^{\wedge}\{n-1\}</ m>.</ p>\)
</statement>
<proof>
<p>Apply induction to the product
\[
<m e>f(x)=x \wedge n=x \backslash c \operatorname{dot} x \wedge\{n-1\}</ m e>
\]
using <xref ref="product-rule"/>.</p>
</proof>
</theorem>
Theorem 4.4 (Power Rule). The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$. Proof. Apply induction to the product

$$
f(x)=x^{n}=x \cdot x^{n-1}
$$

using Theorem 4.1.

Theorem 4.4 (Power Rule). The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$.
Proof. Apply induction to the product

$$
f(x)=x^{n}=x \cdot x^{n-1}
$$

using Theorem 4.1.

三 Contents	Index		< Prev	ヘ Up	Next >
Front Matter	Theorem 4.4 Power Rule. The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$.				
1 Introduction					
2 The Fundamental Theorem					
3 Computing Integrals with Sage (\int)	$f(x)=x^{n}=x \cdot x^{n-1}$				
4 An Interesting Corollary	using Theorem 4.1.				
5 Some Facts and Figures					
6 Some Advanced Ideas	Corollary 4.5. Suppose $f(x)$ is a continuous function. Then				

What's New?

Textbook Use: All Students for Entire Semester

Rows are sections, columns are days

Textbook Use: Exams

Rows are sections, columns are days
relative usage:

Textbook Use: Spring Break!

Rows are sections, columns are days
relative usage:

Thank-you for your attention

PreTeXt: mathbook.pugetsound.edu

buzzard.pugetsound.edu/talks.html

Partial support for this work was provided by the National Science Foundation's Improving Undergraduate STEM

Education (IUSE) program under Award No. 1626455. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

