## THE ROLE O F T TCCHNOLOGY Y N A FRSS LINEAR ALGEBRA COURSE

Robert A. Beezer<br>University of Puget Sound<br>SIAM CONFERENCE ON APPLIED LINEAR ALEEBRA

MAY 17, 2021

## "TECHNOLOGY"

When we say "technology" for teaching I think we mean many different things. (And we hear different things!)

Parallel: "data", as in "Social media sites abuse your DATA."

- Personally identifiable information? Identification (SSN)? Financial information (account numbers)? Health records?
- Google: Maps, numerous discussion boards, Discover application (news feed)
- Facebook: your social graph, your friends

What do we mean by "technology" for teaching linear algebra?

## FOUR TYPES OF TECHNOLOGY

- Tutorial Assistants
- Reduced Row-Echelon Form
- www.math.odu.edu/~bogacki/lat/
- Point-and-Click Interactive Explorations
- David Austin's Understanding Linear Algebra
- Matrices as linear transformations
- Eigenvalues and eigenvectors is a similar class
- Computationally-Assisted Demonstrations
- SVD Rank-One Decomposition for image compression
- A Sage interact hosted on CoCalc.com
- Computationally-Assisted Explorations
- Eigenvalues of a Companion Matrix
- Simulated exam question via Sage Cell Server


## Elgenvalues WITHOUT DETERMINANTS

1. For $n \times n$ matrix $A$, choose any nonzero vector $\mathbf{x} \in \mathbb{C}^{n}$.
2. Then we have a linearly dependent set

$$
A^{0} \mathbf{x}, A^{1} \mathbf{x}, A^{2} \mathbf{x}, \ldots, A^{n} \mathbf{x}
$$

3. And a relation of linear dependence

$$
a_{0} A^{0} \mathbf{x}+a_{1} A^{1} \mathbf{x}+a_{2} A^{2} \mathbf{x}+\cdots+a_{n} A^{n} \mathbf{x}=\mathbf{0}
$$

4. Define a polynomial and factor (over $\mathbb{C}!$ ):

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)
$$

5. And thus

$$
\mathbf{0}=p(A) \mathbf{x}=\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \ldots\left(A-\lambda_{n} I\right) \mathbf{x}
$$

6. Build up the product from right to left. At some point a nonzero vector is annihilated by $\left(A-\lambda_{k} I\right)$. 7. $\lambda_{k}$ is an eigenvalue, the last nonzero product is the eigenvector.

## elgenvalues of a companion matrix

Companion matrix, $A$, and its first five powers:

$$
A^{0}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A=A^{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 2 \\
1 & 0 & 0 & -5 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1
\end{array}\right] \quad A^{2}=\left[\begin{array}{cccc}
0 & 0 & 2 & 2 \\
0 & 0 & -5 & -3 \\
1 & 0 & 3 & -2 \\
0 & 1 & 1 & 4
\end{array}\right]
$$

$$
A^{3}=\left[\begin{array}{cccc}
0 & 2 & 2 & 8 \\
0 & -5 & -3 & -18 \\
0 & 3 & -2 & 9 \\
1 & 1 & 4 & 2
\end{array}\right] \quad A^{4}=\left[\begin{array}{cccc}
2 & 2 & 8 & 4 \\
-5 & -3 & -18 & -2 \\
3 & -2 & 9 & -12 \\
1 & 4 & 2 & 11
\end{array}\right]
$$

First column is predictable, so choose $\mathbf{x}=(1,0,0,0)^{t}$.
First four initial columns are linearly independent, first five are clearly linearly dependent.
Relation of linear dependence: $-2 A^{0} \mathbf{x}+5 A^{1} \mathbf{x}-3 A^{2} \mathbf{x}-1 A^{3} \mathbf{x}+A^{4} \mathbf{x}=\mathbf{0}$.
$p(x)=-2+5 x-3 x^{2}-x^{3}+x^{4}=(x+2)(x-1)^{3}$

## CONCLUSION

- "Technology" in teaching (linear algebra) can mean lots of things.
- Linear algebra is a perfect disipline for using technology:
- unimaginable dimensions (greater than 4)
- impossible "by-hand" computations (10th power of a $10 \times 10$ matrix)
- We owe it to students with applied interests in the modern world to expose them to computation.
- Computational power, easily available in our modern world, can illustrate
- applications, such as SVD image compression), and
- theory, such as eigenvalues of companion matrices

Links

- Slides: buzzard.ups.edu/talks.html
- Sage-Enabled Textbook: A First Course in Linear Algebra, linear . ups . edu

